Materials and Structures

, Volume 40, Issue 2, pp 189–199 | Cite as

Localised strain and stress in bonded concrete overlays subjected to differential shrinkage

  • H. Beushausen
  • M. G. Alexander
Original Article


Bonded concrete overlays are widely used for repair and strengthening of existing structures as well as for precast elements which receive an in-situ topping. The performance of such overlays relates mainly to their resistance to cracking and debonding. Associated failure mechanisms are a result largely of differential volume changes between substrate and overlay. The objective of this paper is to provide an analytical tool to facilitate the design of bonded overlays for crack-resistance when subjected to shrinkage restraint.

Fundamental strain characteristics of composite members are identified and existing analytical models for the prediction of strains and stresses in bonded overlays are evaluated. Results from experimental work indicate that existing models, which are based on simple beam theory, are deficient in modelling overlay strains realistically. The degree of overlay restraint was found to depend far less on relative section dimensions of substrate and overlay than is commonly assumed. Based on fundamental aspects concerning strain characteristics of bonded overlays, an analytical prediction model is introduced, based on localised strain conditions at the interface.


American Concrete Institute Composite Section Restrained Shrinkage Interface Strain Differential Shrinkage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Granju JL (2004) 193-RLS RILEM TC Bonded cement-based material overlays for the repair, the lining or the strengthening of slabs or pavements. State of the Art Report (draft), FranceGoogle Scholar
  2. 2.
    Vaysburd AM, Emmons PH, Mailvaganam NP, McDonald JE, Bissonette B (2004) Concrete repair technology — A revised approach is needed. Concrete International 59–65Google Scholar
  3. 3.
    Birkeland HW (1960) Differential shrinkage in composite beams. Journal of the American Concrete Institute 1123–1136Google Scholar
  4. 4.
    Evans RH, Chung HW (1967) Shrinkage and deflection of composite prestressed concrete beams. Concrete 157–166Google Scholar
  5. 5.
    Klopfer H (1987) Spannungen und Verformungen von Industrie-Estrichen (Stresses and deformations of industrial screeds). Technische Akademie Esslingen, International Colloquium: Industry Floors, GermanyGoogle Scholar
  6. 6.
    Haardt P (1991) Zementgebundene und kunststoffvergütete Beschichtungen auf Beton (cement-based and polymer-modified overlays for concrete). Massivbau Baustofftechnologie Karlsruhe, Heft 13, TH Karlsruhe, GermanyGoogle Scholar
  7. 7.
    Yuan Y, Marsszeky M (1994) Restrained shrinkage in repaired reinforced concrete elements. Materials and Structures 27:375–382CrossRefGoogle Scholar
  8. 8.
    Alonso Junghanns MT (1997) Zur Rissicherheit zementgebundener dehnungsbehinderter Schichten unter Berücksichtigung von Dauereinflüssen (On the crack-resistance of cement-based restrained members with consideration of long-term influences). PhD thesis, Universität Hamburg-Harburg, Shaker Verlag, Aachen, GermanyGoogle Scholar
  9. 9.
    Yuan Y, Li G, Cai Y (2003) Modeling for prediction of restrained shrinkage effect in concrete repair. Cement and Concrete Research 33:347–352CrossRefGoogle Scholar
  10. 10.
    Bernard O (2000) Comportement à long termedes elements de structure formés de bétons d'âges différents. Doctoral thesis, Swiss Federal Institute of Technology No 2283, Lausanne, SwitzerlandGoogle Scholar
  11. 11.
    Denarié E, Silfwerbrand J (2004) Structural behaviour of bonded concrete overlays. Proceedings, International RILEM Workshop on 'Bonded Concrete Overlays, June 7–8, 2004, Stockholm, Sweden, pp 37–45Google Scholar
  12. 12.
    Silfwerbrand J (1997) Stresses and strains in composite concrete beams subjected to differential shrinkage. ACI Structural Journal 94(4)Google Scholar
  13. 13.
    Kaufmann N (1971) Das Sandflächenverfahren (The Sand-area method). Strassenbau Technik 24(3):31–50 (Germany)Google Scholar
  14. 14.
    Beushausen H. (2005) Long-term performance of bonded concrete overlays subjected to differential shrinkage. PhD thesis, University of Cape Town, South AfricaGoogle Scholar
  15. 15.
    Horimoto H, Koyanagi W (1994) Estimation of stress relaxation in concrete at early ages. Proceedings: RILEM Symposium Thermal Cracking in Concrete at early ages, edited by Springenschmidt R, Chapman & Hall, London, pp 95–102Google Scholar
  16. 16.
    Gutsch A, Rostásy FS (1994) Young concrete under high tensile stresses — creep relaxation and cracking. Proceedings: RILEM Symposium Thermal Cracking in Concrete at early ages, edited by Springenschmidt R, Chapman & Hall, London pp 111–116Google Scholar
  17. 17.
    Kordina K, Schubert L, Troitzsch U (2000) Kriechen von Beton unter Zugbeanspruchung (Creep of concrete in tension). Deutscher Ausschuss für Stahlbeton, Heft 498, Beuth Verlag, BerlinGoogle Scholar
  18. 18.
    Trost H (1991) Auswirkungen des Superpositionsprinzips auf Kriech- und Relaxationsprobleme bei Beton und Spannbeton (Effects of the superposition prociniple on creep and relaxation related problems in concrete). Beton- und Stahlbetonbau 62, Berlin, Germay 1967, Heft 10, pp 230–238 und Heft 11, pp 261–269Google Scholar
  19. 19.
    Walraven J, Shkoukani H (1993) Kriechen und Relaxation des Betons bei Temperatur-Zwangsbeanspruchung (Creep and relaxation of concrete subjected to restrained temperature deformation). Beton- und Stahlbetonbau 88(Heft 1):10–15Google Scholar
  20. 20.
    Comitè Euro-International du Bèton (CEB) (1993b) Structural effects of time-dependent behaviour of concrete. CEB Bulletin d'information, No. 215, Lausanne, SwitzerlandGoogle Scholar
  21. 21.
    American Concrete Institute (ACI), Committee 209 (1992) Prediction of creep, shrinkage and temperature effects in concrete structures. 209R-92, ACI, Detroit, USAGoogle Scholar
  22. 22.
    Comitè Euro-International du Bèton (CEB) (1993a) CEB-FIP Model code for concrete Structures, 1990 (MC-90). CEB Bulletin d'information, No. 213/214, Lausanne, SwitzerlandGoogle Scholar

Copyright information

© RILEM 2006

Authors and Affiliations

  • H. Beushausen
    • 1
  • M. G. Alexander
    • 1
  1. 1.University of Cape TownCape TownSouth Africa

Personalised recommendations