Materials and Structures

, Volume 39, Issue 1, pp 105–113 | Cite as

Influence of Microstructure on The Resistance to Salt Crystallisation Damage in Brick

  • D. Benavente
  • L. Linares-Fernández
  • G. Cultrone
  • E. Sebastián


In the article we study the variation of brick durability and, more specifically, its resistance to salt crystallisation produced by changes in its microstructure during firing. For this purpose, the evolution of both mechanical and pore structure properties are studied within a wide range of temperatures (700–1100C). An increase in the firing temperature produces a more homogeneous and resistant brick, measured using ultrasound velocity and uniaxial compressive strength. This result is obtained thanks to the vitrification process and changes in the brick's pore structure: larger, rounder pores, which are quantified by their roundness and fractal dimension. As a result of these changes, an excellent durability is achieved in the bricks studied when fired at temperatures above 1000C. Considering that few differences are noted in pore structure and brick strength between 1000 and 1100C, the recommended firing temperature is, for raw materials with a similar composition and production process, 1000C, as this involves a lower production cost than firing at 1100C.


Fractal Dimension Pore Shape Ultrasound Velocity Pore Structure Parameter Capillary Imbibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Winkler EM (1997) Stone in architecture: Properties, durability. 3rd edn, Springer-Verlag, Berlin.Google Scholar
  2. 2.
    Scherer GW (1999) Crystallization in pores. Cem. Concr. Res. 29:1347–1358.CrossRefGoogle Scholar
  3. 3.
    Lewin SZ (1981) The mechanism of masonry decay through crystallisation. Conservation of Historic Stone Building and Monuments, National Academy of Sciences, Washington DC, 120–144.Google Scholar
  4. 4.
    Rodríguez-Navarro C, Doehne E (1999) Salt weathering: Influence of evaporation rate, supersaturation and crystallisation pattern. Earth Surf. Process. Landforms 24:191–209.CrossRefGoogle Scholar
  5. 5.
    Larsen ES, Nielsen CB (1990) Decay of bricks due to salt. Mater. Struct. 23:16–25.CrossRefGoogle Scholar
  6. 6.
    Scherer GW, Flatt RJ, Wheeler G (2001) Materials science research for the conservation of sculpture and monuments. MRS Bull. 26:44–50.Google Scholar
  7. 7.
    Maage M (1980) Frost resistance and pore size distribution in bricks. Report No. RM1 80-201, Norwegian Inst. of Techn., Univ. of Trondheim, Trondheim.Google Scholar
  8. 8.
    Robinson GC (1984) The relationship between pore structure and durability of brick. Am. Ceram. Soc. Bull. 63:295–300.Google Scholar
  9. 9.
    Winslow N, Kilgour CL, Crooks RW (1988) Predicting the durability of bricks. J. Test. Eval. 16:527–531.CrossRefGoogle Scholar
  10. 10.
    Ordóñez S, Fort R, García del Cura MA (1997) Pore size distribution and the durability of a porous limestone. Q. J. Eng. Geol. 30:221–230.Google Scholar
  11. 11.
    Mandelbrot BB (1982) The fractal geometry of nature. W. H.Freeman, S. Francisco.MATHGoogle Scholar
  12. 12.
    White FM (1991) Viscous fluid flow. 2nd edn, McGraw-Hill, New York.Google Scholar
  13. 13.
    Scherer GW (2004) Stress from crystallization of salt. Cem. Concr. Res 34:1613–1624.CrossRefGoogle Scholar
  14. 14.
    Dullien FAL, El-Sayed MS, Batra VK (1977) Rate of capillary rise in porous media with nonuniform pores. J. Colloid Interf. Sci. 60:497–506.CrossRefGoogle Scholar
  15. 15.
    Hammecker C, Jeannette D (1994) Modelling the capillary imbibition kinectics in sedimentary rocks: Role of petrographical features. Transport in Porous Med. 17:285–303.CrossRefGoogle Scholar
  16. 16.
    Benavente D, Lock P, García del Cura MA, Ordóñez S (2002) Predicting the capillary imbibition of porous rocks from microstructure. Transport in Porous Med. 49:59–76.CrossRefGoogle Scholar
  17. 17.
    Elert K, Cultrone G, Rodríguez-Navarro C, Sebastián E (2003) Durability of bricks used in the conservation of historic buildings–-Influence of composition and microstructure. J. Cult. Herit. 4:91–99.CrossRefGoogle Scholar
  18. 18.
    Benavente D, García del Cura MA, Fort R, Ordóñez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng. Geol. 74:113–127.CrossRefGoogle Scholar
  19. 19.
    de Buergo Ballester MA, González Limón T (1994) Restauración de edificios monumentales. Monografías del Ministerio de Obras Públicas, Transportes y Medio Ambiente.Google Scholar
  20. 20.
    Cultrone G, Rodríguez-Navarro C, Sebastián E, Cazalla O, de la Torre MJ (2001) Carbonate and silicate phase reactions during ceramic firing. Eur. J. Mineral. 13:621–634.CrossRefGoogle Scholar
  21. 21.
    Warren J (1999) Conservation of brick. Butterworth Heinemann, Oxford.Google Scholar
  22. 22.
    Delbrouck O, Janssen J, Ottenburgs R, Van Oyen P, Viaene W (1993) Evolution of porosity in extruded stoneware as a function of firing temperature. Appl. Clay Sci. 7:187–192.CrossRefGoogle Scholar
  23. 23.
    Cultrone G, Sebastián E, Elert K, de la Torre MJ, Cazalla O, Rodríguez-Navarro C (2004) Influence of mineralogy and firing temperature on porosity of bricks. J. Eur. Ceram. Soc. 24:547–564.CrossRefGoogle Scholar
  24. 24.
    Binda L, Baronio G (1984) Measurement of the resistance to deterioration of old and new bricks by means of accelerated aging tests. Durability of Building Materials 2:139–154.Google Scholar
  25. 25.
    Dondi M, Ercolani G, Fabbri B, Marsigli M (1998) An approach to the chemistry of pyroxenes formed during the firing of Ca-rich silicate ceramics. Clay Miner. 33:443–452.CrossRefGoogle Scholar
  26. 26.
    Riccardi MP, Messiga B, Duminuco P (1999) An approach to the dynamics of clay firing. Appl. Clay Sci. 15:393–409.CrossRefGoogle Scholar
  27. 27.
    Rodríguez-Navarro C, Cultrone G, Sánchez-Navas A, Sebastián E (2003) Dynamics of high-T muscovite to mullite transformation: A TEM study. Am. Mineral. 88:713–724.Google Scholar
  28. 28.
    Cultrone G (2001) Estudio Mineralógico-petrográfico y físico-mecánico de ladrillos macizos para su aplicación en intervenciones del Patrimonio Histórico. PhD Thesis. Universidad de Granada, Granada.Google Scholar
  29. 29.
    Parras J, Sánchez Jiménez C, Rodas M, Luque FJ (1996) Ceramic applications of middle Ordovician shales from central Spain. Appl. Clay Sci. 11:25–41.CrossRefGoogle Scholar
  30. 30.
    Tite MS, Maniatis Y (1975) Examination of ancient pottery using the scanning electron microscope. Nature 257:122–123.CrossRefGoogle Scholar
  31. 31.
    UTHESCA ImageTool®. Develop at the University of Texas Health Science Center at San Antonio (Texas, 1995), http://www.from Scholar
  32. 32.
    NORMAL 29/88, Misura dell'indice di asciugamento (drying index). CNR-ICR, Roma, 1988.Google Scholar
  33. 33.
    Zimmerman RW, Bodvarsson G (1991) A simple approximate solution for horizontal infiltration in a Brooks-Corey medium. Transport in Porous Med. 6:195–205.Google Scholar
  34. 34.
    ASTM D 2938 (1986) Standard test method for unconfined compressive strength of intact core specimens.Google Scholar
  35. 35.
    Wellman HW, Wilson AT (1965) Salt weathering, a neglected geological erosive agent in coastal and arid environments. Nature 205:1097–1098.CrossRefGoogle Scholar
  36. 36.
    La Iglesia A, González V, López-Acevedo V, Viedma C (1997) Salt crystallization in porous construction materials I. Estimation of crystallization pressure. J. Cryst. Growth 177:111–118.CrossRefGoogle Scholar

Copyright information

© RILEM 2006

Authors and Affiliations

  • D. Benavente
    • 1
  • L. Linares-Fernández
    • 2
  • G. Cultrone
    • 3
  • E. Sebastián
    • 3
  1. 1.Laboratorio de Petrología Aplicada. Unidad Asociada CSIC-UA. Dpto. Ciencias de la Tierra y del Medio AmbienteUniversidad de AlicanteAlicanteSpain
  2. 2.Dpto. de Construcciones ArquitectónicasUniversidad de AlicanteAlicanteSpain
  3. 3.Dpto. de Mineralogía y Petrología, F. de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations