Skip to main content
Log in

Influence of cement type on transport properties and chemical degradation: Application to nuclear waste storage

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The geological repository of nuclear waste in concrete containers is a possible storage method explored by ANDRA (Agence Nationale pour la gestion des Déchets RadioActifs).

The concrete must display a high confinement capacity for long periods, characterized by low transport properties and by the acido-basic buffer of hydrated cement. During service life, these properties can be endangered by chemical attack of underground water.

The cement type has an important influence on the concrete's performances. Then, it is essential to establish appropriate mixtures with accurate components.

In this work an ordinary Portland cement and a fly ash and blast furnace slag blended cement are compared.

To determine confinement capacities, transfer properties and mortars microstructure were investigated.

To predict the long term behaviour, an ammonium nitrate test has been developed to enhance decalcification and to accelerate hydrolysis of cementitious materials.

Measurement of degraded depth with time regarding calcium content was carried out. Impact of decalcification on transport properties was evaluated.

Fly ash and blast furnace slag provide better properties for native mortars, and more particularly diffusion properties, but not as much as necessary to limit leaching in degraded material by chemical attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Calibé (2000) Projet national Calibé. Suivi rhéologique sur mortier de béton équivalent MBE, (IREX, Paris).

  2. Tognazzi C (1998) Couplage fissuration-dégradation chimique dans les matériaux cimentaires; caractérisation et modélisation, Ph.D thesis, INSA Toulouse.

  3. Adenot F (1992) Durabilité du béton : caractérisation et modélisation des processus physiques et chimiques de dégradation du ciment, Ph.D. thesis, INSA Toulouse .

  4. Day RL, Konecny L (1989) Relationship between permeability and microstructural characteristics of fly ash mortars, in Pore structure and permeability of cementitious materials, Proceedings of Materials Research Society Symposium (Ed. L.R.,Roberts, J.P., Skalny), 137: 391–402.

    Google Scholar 

  5. AFPC-AFREM (1997) Détermination de la masse volumique apparente et de la porosité accessible á l'eau, in Méthodes recommandées pour la mesure des grandeurs associées á la durabilité, in Compte rendu des journées techniques AFPC-AFREM, (Toulouse) 121–124.

  6. Kollek JJ (1989) The determination of the permeability of concrete to oxygen gas by the Cembureau method- a recommendation, Material and Structure 22: 225–230.

    Article  Google Scholar 

  7. Lydon FD (1995) Effect of coarse aggregate and water/cement ratio on intrinsic permeability of concrete subject to drying, Cement and Concrete Research 25: 1737–1746.

    Article  Google Scholar 

  8. Carcassés M, Abbas A, Ollivier JP, Verdier J (2001) An optimised preconditionnal procedure for gas permeability measurement, Materials and Structure 35: 22–27.

    Article  Google Scholar 

  9. Truc O, Ollivier JP, Carcassés M (2000) A new way for determining the chloride diffusion coefficient in concrete from steady state migration test, Cement and Concrete Research, 30, 217–226.

    Article  Google Scholar 

  10. Carde C (1997) Caractérisation et modélisation de l'altération des propriétés due á la lixiviation des matériaux cimentaires, Ph.D thesis, INSA Toulouse.

  11. Schneider U, Chen SW (2003) Influence of concentration of ammonium nitrate solutions on concrete, Proceedings of the Sixth CANMET/ACI International Conference on Durability of Concrete (Thessaloniki), 439–447.

  12. Targan S, Olgun A, Erdigan Y, Sevinc V (2003) Influence of natural pozzolan, colemanite ore waste, bottom ash and fly ash on the properties of Portland cement, Cement and Concrete Research 33: 1175–1182.

    Article  Google Scholar 

  13. Powers TC, Browntard TL (1947) Studies of the physical properties of hardened Portland cement Paste, ACI Journals Proceedings 43, (Part VII), 933–992.

    Google Scholar 

  14. Regourd M, 1987 Microstructure of cement blends containing fly ash, silica fume, slag and fillers’, in ‘Microstructural development during hydration cement, Proceedings of Materials Research Society, 85: (Struble LJ, Brown PW) 187–199.

  15. Cook DJ, Cao HT, Coan EP, 1987 Pore structure development in Portland/fly ash blends, in Microstructural development during hydration cement, Proceedings of Materials Research Society, 85, (Struble LJ, Brown, PW) 201–213.

  16. Abbas A, Carcassés M, Olliver JP (1999) Gas permeability of concrete in relation to its degree of saturation, Material and Structure 32: 3–8.

    Article  Google Scholar 

  17. AFGC (2004) Conception des bétons pour une durée de vie donnée des ouvrages, Documents scientifiques et technique.

  18. Kearsley EP, Wainwright PJ (2001) Porosity and permeability of foamed concrete, Cement and Concrete Research 31: 805–812.

    Article  Google Scholar 

  19. Malek RIA, Roy DM, Licastro PH (1987) The diffusion of chloride ions in fly ash cement pastes and mortars, in Microstructural development during hydration cement, Proceedings of Materials Research Society, 85 (Struble LJ, Brown PW) 223–233.

  20. Le Bellego C (2001) Couplage chimie-mécanique dans les structures en béton attaquées par l'eau : étude expérimentale et analyse numérique, Ph.D. thesis, ENS Cachan.

  21. Mainguy M, Tognazzi C, Torrenti JM, Adenot F (2000) Modeling of leaching in pure cement paste and mortar, Cement and Concrete Research 30: 83–90.

    Article  Google Scholar 

  22. Bagel L, Zivica V (1997) Relationship between pore structure and permeability of hardened cement mortars: on the choice of effective pore structure parameter, Cement and Concrete Research 27(8), 1225–1235.

    Article  Google Scholar 

  23. Richardson IG (1999) The nature of CSH in hardened cements, Cement and Concrete Research, 29: 1131–1147.

    Article  Google Scholar 

  24. Carde C, Francois R (1997) Effect of ITZ leaching on durability of cement-based materials, Cement and Concrete Research 27(7) 971–978.

    Article  Google Scholar 

  25. Marchand J, Bentz D, Samson E, Maltais Y (2001) Influence of calcium hydroxide dissolution on the transport properties of hydrated cements systems, Reactions of calcium hydroxide in concrete, American Ceramic Society.

  26. Kamali S (2003) Comportement et simulation des matériaux cimentaires en environnements agressifs :lixiviation et température, Ph.D thesis, ENS Cachan.

  27. Bentz DP, Garboczi EJ (1992) Modeling the leaching of calcium hydroxide from cement paste: effects on pore space percolation and diffusivity, Material and Structure, 25: 523–533.

    Article  Google Scholar 

  28. Cui L, Herman Cahyadi J (2001) Permeability and pore structure of OPC past, Cement and Concrete Research, 31: 277–282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlot, C., Verdier, J. & Carcassès, M. Influence of cement type on transport properties and chemical degradation: Application to nuclear waste storage. Mater Struct 39, 511–523 (2006). https://doi.org/10.1617/s11527-005-9020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-005-9020-9

Keywords

Navigation