Materials and Structures

, Volume 39, Issue 5, pp 511–523 | Cite as

Influence of cement type on transport properties and chemical degradation: Application to nuclear waste storage

  • C. Perlot
  • J. Verdier
  • M. Carcassès


The geological repository of nuclear waste in concrete containers is a possible storage method explored by ANDRA (Agence Nationale pour la gestion des Déchets RadioActifs).

The concrete must display a high confinement capacity for long periods, characterized by low transport properties and by the acido-basic buffer of hydrated cement. During service life, these properties can be endangered by chemical attack of underground water.

The cement type has an important influence on the concrete's performances. Then, it is essential to establish appropriate mixtures with accurate components.

In this work an ordinary Portland cement and a fly ash and blast furnace slag blended cement are compared.

To determine confinement capacities, transfer properties and mortars microstructure were investigated.

To predict the long term behaviour, an ammonium nitrate test has been developed to enhance decalcification and to accelerate hydrolysis of cementitious materials.

Measurement of degraded depth with time regarding calcium content was carried out. Impact of decalcification on transport properties was evaluated.

Fly ash and blast furnace slag provide better properties for native mortars, and more particularly diffusion properties, but not as much as necessary to limit leaching in degraded material by chemical attack.


Fly ash blast furnace slag gas permeability chloride diffusion mercury intrusion porosimetry decalcification ammonium nitrate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calibé (2000) Projet national Calibé. Suivi rhéologique sur mortier de béton équivalent MBE, (IREX, Paris).Google Scholar
  2. 2.
    Tognazzi C (1998) Couplage fissuration-dégradation chimique dans les matériaux cimentaires; caractérisation et modélisation, Ph.D thesis, INSA Toulouse.Google Scholar
  3. 3.
    Adenot F (1992) Durabilité du béton : caractérisation et modélisation des processus physiques et chimiques de dégradation du ciment, Ph.D. thesis, INSA Toulouse .Google Scholar
  4. 4.
    Day RL, Konecny L (1989) Relationship between permeability and microstructural characteristics of fly ash mortars, in Pore structure and permeability of cementitious materials, Proceedings of Materials Research Society Symposium (Ed. L.R.,Roberts, J.P., Skalny), 137: 391–402.Google Scholar
  5. 5.
    AFPC-AFREM (1997) Détermination de la masse volumique apparente et de la porosité accessible á l'eau, in Méthodes recommandées pour la mesure des grandeurs associées á la durabilité, in Compte rendu des journées techniques AFPC-AFREM, (Toulouse) 121–124.Google Scholar
  6. 6.
    Kollek JJ (1989) The determination of the permeability of concrete to oxygen gas by the Cembureau method- a recommendation, Material and Structure 22: 225–230.CrossRefGoogle Scholar
  7. 7.
    Lydon FD (1995) Effect of coarse aggregate and water/cement ratio on intrinsic permeability of concrete subject to drying, Cement and Concrete Research 25: 1737–1746.CrossRefGoogle Scholar
  8. 8.
    Carcassés M, Abbas A, Ollivier JP, Verdier J (2001) An optimised preconditionnal procedure for gas permeability measurement, Materials and Structure 35: 22–27.CrossRefGoogle Scholar
  9. 9.
    Truc O, Ollivier JP, Carcassés M (2000) A new way for determining the chloride diffusion coefficient in concrete from steady state migration test, Cement and Concrete Research, 30, 217–226.CrossRefGoogle Scholar
  10. 10.
    Carde C (1997) Caractérisation et modélisation de l'altération des propriétés due á la lixiviation des matériaux cimentaires, Ph.D thesis, INSA Toulouse.Google Scholar
  11. 11.
    Schneider U, Chen SW (2003) Influence of concentration of ammonium nitrate solutions on concrete, Proceedings of the Sixth CANMET/ACI International Conference on Durability of Concrete (Thessaloniki), 439–447.Google Scholar
  12. 12.
    Targan S, Olgun A, Erdigan Y, Sevinc V (2003) Influence of natural pozzolan, colemanite ore waste, bottom ash and fly ash on the properties of Portland cement, Cement and Concrete Research 33: 1175–1182.CrossRefGoogle Scholar
  13. 13.
    Powers TC, Browntard TL (1947) Studies of the physical properties of hardened Portland cement Paste, ACI Journals Proceedings 43, (Part VII), 933–992.Google Scholar
  14. 14.
    Regourd M, 1987 Microstructure of cement blends containing fly ash, silica fume, slag and fillers’, in ‘Microstructural development during hydration cement, Proceedings of Materials Research Society, 85: (Struble LJ, Brown PW) 187–199.Google Scholar
  15. 15.
    Cook DJ, Cao HT, Coan EP, 1987 Pore structure development in Portland/fly ash blends, in Microstructural development during hydration cement, Proceedings of Materials Research Society, 85, (Struble LJ, Brown, PW) 201–213.Google Scholar
  16. 16.
    Abbas A, Carcassés M, Olliver JP (1999) Gas permeability of concrete in relation to its degree of saturation, Material and Structure 32: 3–8.CrossRefGoogle Scholar
  17. 17.
    AFGC (2004) Conception des bétons pour une durée de vie donnée des ouvrages, Documents scientifiques et technique.Google Scholar
  18. 18.
    Kearsley EP, Wainwright PJ (2001) Porosity and permeability of foamed concrete, Cement and Concrete Research 31: 805–812.CrossRefGoogle Scholar
  19. 19.
    Malek RIA, Roy DM, Licastro PH (1987) The diffusion of chloride ions in fly ash cement pastes and mortars, in Microstructural development during hydration cement, Proceedings of Materials Research Society, 85 (Struble LJ, Brown PW) 223–233.Google Scholar
  20. 20.
    Le Bellego C (2001) Couplage chimie-mécanique dans les structures en béton attaquées par l'eau : étude expérimentale et analyse numérique, Ph.D. thesis, ENS Cachan.Google Scholar
  21. 21.
    Mainguy M, Tognazzi C, Torrenti JM, Adenot F (2000) Modeling of leaching in pure cement paste and mortar, Cement and Concrete Research 30: 83–90.CrossRefGoogle Scholar
  22. 22.
    Bagel L, Zivica V (1997) Relationship between pore structure and permeability of hardened cement mortars: on the choice of effective pore structure parameter, Cement and Concrete Research 27(8), 1225–1235.CrossRefGoogle Scholar
  23. 23.
    Richardson IG (1999) The nature of CSH in hardened cements, Cement and Concrete Research, 29: 1131–1147.CrossRefGoogle Scholar
  24. 24.
    Carde C, Francois R (1997) Effect of ITZ leaching on durability of cement-based materials, Cement and Concrete Research 27(7) 971–978.CrossRefGoogle Scholar
  25. 25.
    Marchand J, Bentz D, Samson E, Maltais Y (2001) Influence of calcium hydroxide dissolution on the transport properties of hydrated cements systems, Reactions of calcium hydroxide in concrete, American Ceramic Society.Google Scholar
  26. 26.
    Kamali S (2003) Comportement et simulation des matériaux cimentaires en environnements agressifs :lixiviation et température, Ph.D thesis, ENS Cachan.Google Scholar
  27. 27.
    Bentz DP, Garboczi EJ (1992) Modeling the leaching of calcium hydroxide from cement paste: effects on pore space percolation and diffusivity, Material and Structure, 25: 523–533.CrossRefGoogle Scholar
  28. 28.
    Cui L, Herman Cahyadi J (2001) Permeability and pore structure of OPC past, Cement and Concrete Research, 31: 277–282.CrossRefGoogle Scholar

Copyright information

© RILEM has copyright 2006

Authors and Affiliations

  • C. Perlot
    • 1
  • J. Verdier
    • 1
  • M. Carcassès
    • 1
  1. 1.LMDC, UPS - INSAToulouseFrance

Personalised recommendations