Advertisement

Materials and Structures

, 52:15 | Cite as

Prediction of concrete casting in steel-plate concrete panels

  • Tae Yong Shin
  • Jae Hong KimEmail author
Original Article
  • 41 Downloads

Abstract

Sound casting is necessary for obtaining high-quality concrete structures. A quantitative evaluation for the sound casting can be achieved by describing the passing and filling ability of concrete. This study proposes a generalized model to predict the filling ability of concrete in steel-plate concrete panels. The panels include periodic arrayed studs; their density is much higher than that of general reinforcements in concrete structures. The permeability describing the concrete flow resistance by the periodic arrayed studs is numerically evaluated considering their geometrical distribution. Two algorithms based on the porous-medium analogy are then proposed to simulate the filling of concrete.

Keywords

Rheology Casting Filling ability SC structures Porous-medium 

Notes

Acknowledgements

This study was funded by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number: NRF-2018R1D1A1B07047321).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ozaki M, Akita S, Osuga H et al (2004) Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear. Nuclear Eng Des 228:225–244CrossRefGoogle Scholar
  2. 2.
    Yan JB, Wang JY, Liew JYR et al (2016) Ultimate strength behaviour of steel-concrete-steel sandwich plate under concentrated loads. Ocean Eng 118:41–57.  https://doi.org/10.1016/j.oceaneng.2016.03.062 CrossRefGoogle Scholar
  3. 3.
    Takeuchi M, Narikawa M, Matsuo I et al (1998) Study on a concrete filled structure for nuclear power plants. Nucl Eng Des 179:209–223.  https://doi.org/10.1016/s0029-5493(97)00282-3 CrossRefGoogle Scholar
  4. 4.
    Weitzenböck J, Grafton T (2010) Assessment of the INCA Steel-concrete-steel sandwich technology—a public report. DNV, Det Norske Veritas.Google Scholar
  5. 5.
    Lloyd’s Register (2006) Provisional rules for the application of sandwich panel construction to ship structure. Lloyd’s Register of shipping, London.Google Scholar
  6. 6.
    Roussel N, Geiker MR, Dufour F et al (2007) Computational modeling of concrete flow: general overview. Cem Concr Res 37:1298–1307.  https://doi.org/10.1016/j.cemconres.2007.06.007 CrossRefGoogle Scholar
  7. 7.
    Kolařík F, Patzák B, Zeman J (2015) Fresh Concrete flow through reinforcing bars using homogenization approach. In: 21st international conference engineering mechanics, pp 140–141Google Scholar
  8. 8.
    Vasilic K, Meng B, Kühne HC, Roussel N (2011) Flow of fresh concrete through steel bars: a porous medium analogy. Cem Concr Res 41:496–503.  https://doi.org/10.1016/j.cemconres.2011.01.013 CrossRefGoogle Scholar
  9. 9.
    Vasilic K, Schmidt W, Kühne HC et al (2016) Flow of fresh concrete through reinforced elements: experimental validation of the porous analogy numerical method. Cem Concr Res 88:1–6.  https://doi.org/10.1016/j.cemconres.2016.06.003 CrossRefGoogle Scholar
  10. 10.
    Boutin C (2000) Study of permeability by periodic and self-consistent homogenisation. Eur J Mech A/Solids 19:603–632.  https://doi.org/10.1016/S0997-7538(00)00174-1 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carman P (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166Google Scholar
  12. 12.
    Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225.  https://doi.org/10.1016/0021-9991(81)90145-5 CrossRefzbMATHGoogle Scholar
  13. 13.
    Gram A, Silfwerbrand J, Lagerblad B (2014) Obtaining rheological parameters from flow test—analytical, computational and lab test approach. Cem Concr Res 63:29–34.  https://doi.org/10.1016/j.cemconres.2014.03.012 CrossRefGoogle Scholar
  14. 14.
    ASTM C1611/C1611M-14 (2014) Standard test method for slump flow of self-consolidating concrete. ASTM International 6.  https://doi.org/10.1520/c1611
  15. 15.
    Shin TY, Kim JH, Han SH (2017) Rheological properties considering the effect of aggregates on concrete slump flow. Mater Struct 50:239.  https://doi.org/10.1617/s11527-017-1104-9 CrossRefGoogle Scholar
  16. 16.
    Saak AW, Jennings HM, Shah SP (2004) A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res 34:363–371.  https://doi.org/10.1016/j.cemconres.2003.08.005 CrossRefGoogle Scholar
  17. 17.
    Neophytou MKA, Pourgouri S, Kanellopoulos AD et al (2010) Determination of the rheological parameters of self-compacting concrete matrix using slump flow test. Appl Rheol 20:62402.  https://doi.org/10.3933/ApplRheol-20-62402 CrossRefGoogle Scholar
  18. 18.
    Thrane L, Pade C, Svensson T (2007) Estimation of Bingham rheological parameters of SCC from slump flow measurement. In: 5th international RILEM symposium on self-compacting concrete, pp 353–358Google Scholar
  19. 19.
    Roussel N, Coussot P (2005) “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. J Rheol 49:705–718.  https://doi.org/10.1122/1.1879041 CrossRefGoogle Scholar
  20. 20.
    Wallevik JE (2006) Relationship between the Bingham parameters and slump. Cem Concr Res 36:1214–1221.  https://doi.org/10.1016/j.cemconres.2006.03.001 CrossRefGoogle Scholar
  21. 21.
    Zerbino R, Barragán B, Garcia T et al (2009) Workability tests and rheological parameters in self-compacting concrete. Mater Struct/Materiaux et Const 42:947–960.  https://doi.org/10.1617/s11527-008-9434-2 CrossRefGoogle Scholar
  22. 22.
    Andraž H, Franci K, Violeta B-B (2013) Rheological parameters of fresh concrete—comparison of rheometers. Gradevinar 65:99–109Google Scholar
  23. 23.
    ACI Committee 237 (2007) ACI 237R-07, self-consolidating concrete. ACI 237R-07Google Scholar
  24. 24.
    Kim JH, Jang HR, Yim HJ (2015) Sensitivity and accuracy for rheological simulation of cement-based materials. Comput Concr 15:903–919.  https://doi.org/10.12989/cac.2015.15.6.903 CrossRefGoogle Scholar
  25. 25.
    ASTM C94/C94M-15 (2015) Standard specification for ready-mixed concrete. ASTM International.  https://doi.org/10.1520/c0094

Copyright information

© RILEM 2019

Authors and Affiliations

  1. 1.Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations