Advertisement

Materials and Structures

, 52:6 | Cite as

Multicomponent modelling of cement paste dehydration under different heating rates

  • Jin Wang
  • Laurie Lacarrière
  • Alain Sellier
Original Article
  • 61 Downloads

Abstract

The aim of this study is to establish a dehydration model that is able to calculate the water release of cement paste at elevated temperature. The main hydrates in ordinary Portland cement paste (C–S–H, portlandite, aluminates and sulfo-aluminates) were modelled separately and then combined to form the model of the cement paste. In this way, the model is able to predict the dehydration of cement pastes with different compositions without re-fitting. For each hydrate, the dehydration law takes account not only of the maximum quantity of water that can be released at each temperature but also of the kinetics to reach that equilibrium. The model is thus able to reproduce the paste dehydration for any heating rate. Thermogravimetric tests were carried out with different heating rates to validate the model in comparison to experimental results from the literature. The results demonstrated the capability of the model in different situations.

Keywords

Dehydration Multicomponent modelling Elevated temperature Cement paste Heating rate 

Notes

Funding

This study was funded by the Chinese Scholarship Council (CSC) through Jin Wang’s thesis grant and by the French National Research Agency (ANR-PIA) under the MACENA research program 11-RSNR-0012 (Control of nuclear vessel in accident conditions).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bary B, Ranc G, Durand S, Carpentier O (2008) A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures. In J Heat Mass Transf 51(11):2847CrossRefGoogle Scholar
  2. 2.
    Ranc G, Sercombe J, Rodrigues S (2003) Comportement haute temprature du bton de structure: impact de la fissuration sur les transferts hydriques. Revue Franaise de Gnie Civil 7(4):397Google Scholar
  3. 3.
    Gawin D, Pesavento F (2012) An overview of modeling cement based materials at elevated temperatures with mechanics of multi-phase porous media. Fire Technol 48(3):753CrossRefGoogle Scholar
  4. 4.
    Buffo-Lacarrire L, Sellier A, Escadeillas G, Turatsinze A (2007) Multiphasic finite element modeling of concrete hydration. Cement Concr Res 37(2):131CrossRefGoogle Scholar
  5. 5.
    Zhang Q, Ye G (2012) Dehydration kinetics of Portland cement paste at high temperature. J Therm Anal Calorim 110(1):153MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feraille Fresnet A (2000) Le role de l’eau dans le comportement haute temprature des btons. Ph.D. thesis, ENPCGoogle Scholar
  7. 7.
    Kolani B, Buffo-Lacarrire L, Sellier A, Escadeillas G, Boutillon L, Linger L (2012) Hydration of slag-blended cements. Cement Concr Compos 34(9):1009CrossRefGoogle Scholar
  8. 8.
    Jelica Zelic LU, Jozic D (2007) In: The first international proficiency testing conferenceGoogle Scholar
  9. 9.
    Rivas-Mercury J, Pena P, de Aza A, Turrillas X (2008) Dehydration of \(\text{ ca }3\text{ al }2(\text{ sio }4)4(3\text{- }y)\,(0< \text{ y }< 0.176)\) studied by neutron thermodiffractometry. J Eur Ceram Soc 28(9):1737CrossRefGoogle Scholar
  10. 10.
    Horvath I, Proks I, Nerad I (1977) Activation energies of the thermal decompositions of \(\text{ C }_3\text{ AH }_6\) AND\( \text{ C }_3\text{ AD }_6\) by the isothermal TG method. J Therm Anal 12(1):105CrossRefGoogle Scholar
  11. 11.
    Das SK, Mitra A, Poddar PD (1996) Thermal analysis of hydrated calcium aluminates. J Therm Anal 47(3):765CrossRefGoogle Scholar
  12. 12.
    Dilnesa BZ, Lothenbach B, Renaudin G, Wichser A, Wieland E (2012) Stability of monosulfate in the presence of iron. J Am Ceram Soc 95(10):3305CrossRefGoogle Scholar
  13. 13.
    Leisinger SM, Lothenbach B, Le Saout G, Johnson CA (2012) Thermodynamic modeling of solid solutions between monosulfate and monochromate. Cement Concr Res 42(1):158CrossRefGoogle Scholar
  14. 14.
    Pan Guoyao ZH, Ruoqing R (1997) Research of dehydrated calcium sulphoaluminate hydrates (afm) and its hydration. J Wuhan Univ Technolo 19(3):28Google Scholar
  15. 15.
    Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cement Concr Res 30(1):101CrossRefGoogle Scholar
  16. 16.
    Tajuelo Rodriguez E, Garbev K, Merz D, Black L, Richardson IG (2017) Thermal stability of C–S–H phases and applicability of Richardson and Groves’ and Richardson C–(A)–S–H(I) models to synthetic C–S–H. Cement Concr Res 93:45CrossRefGoogle Scholar
  17. 17.
    Foley EM, Kim JJ, Taha MMR (2012) Synthesis and nano-mechanical characterization of calcium-silicate-hydrate C–S–H made with 1.5 C/S mixture. Cement Concr Res 42(9):1225CrossRefGoogle Scholar
  18. 18.
    Morandeau A, Thiery M, Dangla P (2014) Investigation of the carbonation mechanism of ch and csh in terms of kinetics, microstructure changes and moisture properties. Cement Concr Res 56:153CrossRefGoogle Scholar
  19. 19.
    Alarcon-Ruiz L, Platret G, Massieu E, Ehrlacher A (2005) The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement Concr Res 35(3):609CrossRefGoogle Scholar

Copyright information

© RILEM 2019

Authors and Affiliations

  1. 1.Université de ToulouseUPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions)Toulouse, Cedex 04France
  2. 2.China Construction Eighth Engineering Bureau Co., LtdShanghaiChina

Personalised recommendations