Advertisement

Materials and Structures

, 51:152 | Cite as

Use of fine aggregate matrix for computational modeling of low temperature fracture of asphalt concrete

  • Jia-Liang LeEmail author
  • Rebecca Hendrickson
  • Mihai O. Marasteanu
  • Mugurel Turos
Original Article
  • 175 Downloads

Abstract

In this study, a discrete element computational model is applied to simulate the fracture behavior of asphalt mixtures at low temperatures. In this model, coarse aggregates are explicitly represented by rigid spherical particles. The bonds that connect these particles represent the fine aggregate matrix (FAM), which is defined as the combination of asphalt binder and fine aggregates. The bending beam rheometer (BBR) tests are performed to determine the strength and Young’s modulus of FAM at low temperatures. The model is then used to simulate the semi-circular bend (SCB) tests on the mixtures. The model is verified by a series of BBR and SCB tests on both conventional and graphite nano-platelet modified asphalt materials. The comparison between the experimental and simulated results indicates that the peak load capacity of the SCB specimens is primarily governed by the tensile strength of the FAM. However, in order to capture the entire load–displacement curve of the SCB specimens, one needs to employ a softening constitutive model of the FAM, which requires the information on its fracture energy. Several experimental methods for measuring the fracture energy of FAM are discussed for future prediction of the complete load–displacement response of asphalt mixtures at low temperatures.

Keywords

Fine aggregate mixture Discrete element simulation Fracture Beam rheometer test Low temperature cracking 

Notes

Compliance with ethical standards

Funding

This study was funded by the NCHRP IDEA program (Grant Number NCHRP IDEA-173) and the Minnesota Department of Transportation (Contract Number 99008).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11527_2018_1277_MOESM1_ESM.pdf (1014 kb)
Supplementary material 1 (pdf 1014 KB)

References

  1. 1.
    Arabani M, Faramarzi M (2015) Characterization of CNTs-modified HMA’s mechanical properties. Constr Build Mater 83:207–215CrossRefGoogle Scholar
  2. 2.
    Hossain Z, Zaman M, Saha M, Hawa T (2014) Evaluation of viscosity and rutting properties of nanoclay-modified asphalt binders. In: Proceedings of the geo-congress 2014 technical papers, pp 3695–3702Google Scholar
  3. 3.
    Le J-L, Marasteanu MO, Turos M (2016) Graphene nanoplatelet (GNP) reinforced asphalt mixtures: a novel multifunctional pavement material. NCHRP-IDEA report, issue number 173, Transportation Research BoardGoogle Scholar
  4. 4.
    Wang D, Wang L, Gu X, Zhou G (2013) Effect of basalt fiber on the asphalt binder and mastic at low temperature. J Mater Civil Eng 25(3):355–364CrossRefGoogle Scholar
  5. 5.
    Yang J, Tighe S (2013) A review of advances of nanotechnology in asphalt mixtures. In: Procedia—social and behavioral sciences, pp 1269–1276Google Scholar
  6. 6.
    ASTM International (2013) ASTM D7313-13, Standard test method for determining fracture energy of asphalt-aggregate mixtures using the disk-shaped compact tension geometryGoogle Scholar
  7. 7.
    American Association of State Highway and Transportation Officials (2013) AASHTO TP 105 standard method of test for determining the fracture energy of asphalt mixtures using the semicircular bend geometry (SCB)Google Scholar
  8. 8.
    Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture, general ideas and hypothesis, axially symmetric cracks. Prikl Mat Mech 23(3):434–444zbMATHGoogle Scholar
  9. 9.
    Bažant ZP, Le J-L (2017) Probabilistic mechanics of quasibrittle structures: strength, lifetime, and size effect. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca RatonGoogle Scholar
  11. 11.
    Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–108CrossRefGoogle Scholar
  12. 12.
    Song SH, Paulino GH, Buttlar WG (2006) A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng Fract Mech 73(18):2829–2848CrossRefGoogle Scholar
  13. 13.
    Song SH, Paulino GH, Buttlar WG (2006) Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model. J Eng Mech, ASCE 132(11):1215–1223CrossRefGoogle Scholar
  14. 14.
    Kim H, Wagoner MP, Buttlar WG (2008) Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model. J Mater Civil Eng 20(8):552–563CrossRefGoogle Scholar
  15. 15.
    Bažant ZP, Yu Q (2011) Size effect testing of cohesive fracture parameters and non-uniqueness of work-of-fracture method. J Eng Mech, ASCE 137(8):580–588CrossRefGoogle Scholar
  16. 16.
    Hill BC, Giraldo-Londoño O, Paulino GH, Buttlar WG (2017) Inverse estimation of cohesive fracture properties of asphalt mixtures using an optimization approach. Exp Mech 57:637–648CrossRefGoogle Scholar
  17. 17.
    Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65CrossRefGoogle Scholar
  18. 18.
    Cusatis G, Bažant ZP, Cedolin L (2003) Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J Eng Mech, ASCE 129(12):1439–1448CrossRefGoogle Scholar
  19. 19.
    Schauffert EA, Cusatis G (2011) Lattice discrete particle model for fiber-reinforced concrete. I: Theory. J Eng Mech, ASCE 138(7):826–833CrossRefGoogle Scholar
  20. 20.
    Zubelewicz A, Bažant ZP (1987) Interface modeling of fracture in aggregate composites. J Eng Mech, ASCE 113(11):1619–1630CrossRefGoogle Scholar
  21. 21.
    Abbas A, Papagiannakis A, Masad E (2005) Micromechanical simulation of asphaltic materials using the discrete element method. In: Asphalt concrete: simulation, modeling, and experimental characterization—proceedings of the symposium on mechanics of flexible pavements, part of the 2005 joint ASME/ASCE/SES conference on mechanics and materials, pp 1–11Google Scholar
  22. 22.
    Kim H, Buttlar WG (2009) Discrete fracture modeling of asphalt concrete. Int J Solids Struct 46(13):2593–2604CrossRefGoogle Scholar
  23. 23.
    Cusatis G, Bažant ZP, Cedolin L (2003) Confinement-shear lattice model for concrete damage in tension and compression: II. Computation and validation. J Eng Mech, ASCE 129(12):1449–1458CrossRefGoogle Scholar
  24. 24.
    Le J-L, Eliǎś J, Gorgogianni A, Vievering J, Květoň J (2008) Rate-dependent scaling of ynamic tensile strength of quasibrittle structures. J Appl Mech, ASME 85(2):021003 (12 pages)CrossRefGoogle Scholar
  25. 25.
    Potyondy DO (2016) Material-modeling support in PFC. Technical memorandum ICG7766-L, Itasca Consulting Group, Inc. Minneapolis, MNGoogle Scholar
  26. 26.
    Cannone Falchetto A, Le J-L, Turos MI, Marasteanu MO (2014) Indirect determination of size effect on strength of asphalt mixture at low temperatures. Mater Struct 47(1–2):157–169CrossRefGoogle Scholar
  27. 27.
    Le J-L, Cannone Falchetto A, Marasteanu MO (2013) Determination of strength distribution of quasibrittle structures from size effect analysis. Mech Mater 66:79–87CrossRefGoogle Scholar
  28. 28.
    Li X, Marasteanu MO (2010) The fracture process zone in asphalt mixture at low temperature. Eng Fract Mech 77:1175–1190CrossRefGoogle Scholar
  29. 29.
    Marasteanu MO, Zofka A, Turos M, Li X, Velasquez R, Li X, Buttlar W, Paulino G, Braham A, Dave E, Ojo J, Bahia H, Bausano CJ, Gallistel A, McGraw J (2007) Investigation of low temperature cracking in asphalt pavements: national pooled fund study 776. Final report, Minnesota Department of Transportation, St. PaulGoogle Scholar
  30. 30.
    Zegeye E, Le J-L, Turos M, Marasteanu MO (2012) Investigation of size effect in asphalt mixture fracture testing at low temperature. Road Mater Pave Des 13:88–101CrossRefGoogle Scholar
  31. 31.
    Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364CrossRefGoogle Scholar
  32. 32.
    Duan K, Kwok CY (2015) Discrete element modeling of inherently anisotropic rock under Brazilian test conditions. Int J Rock Mech Min Sci 78:46–56CrossRefGoogle Scholar
  33. 33.
    Huang H, Lecampion B, Detournay E (2013) Discrete element modeling of tool–rock interaction I: rock cutting. Int J Numer Anal Methods Geomech 37(13):1913–1929CrossRefGoogle Scholar
  34. 34.
    Huang H, Detournay E (2013) Discrete element modeling of tool–rock interaction II: rock indentation. Int J Numer Anal Methods Geomech 37(13):1930–1947CrossRefGoogle Scholar
  35. 35.
    Marasteanu M, Cannoe Falchetto A, Turos M, Le J-L (2012) Development of a simple test to determine the low temperature strength of asphalt mixtures and binders. NCHRP-IDEA program project final reportGoogle Scholar
  36. 36.
    Le J-L, Du H, Pang S-D (2014) Use of 2-D graphene nano-platelets (GNP) in cement composites for structural health evaluation. Comp Part B: Eng 67:555–563CrossRefGoogle Scholar
  37. 37.
    Sousa P, Kassem E, Masad E, Little D (2013) New design method of fine aggregate mixtures and automated method for analysis of dynamic mechanical characterization data. Constr Build Mater 41:216–223CrossRefGoogle Scholar
  38. 38.
    American Association of State Highway and Transportation Officials (2016) AASHTO T308-16 Standard method of test for determining the asphalt binder content of hot mix asphalt (HMA) by the ignition methodGoogle Scholar
  39. 39.
    Bažant ZP (2005) Scaling of structural strength. Elsevier, LondonzbMATHGoogle Scholar
  40. 40.
    Bažant ZP, Pang S-D (2007) Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. J Mech Phys Solids 55:91–134CrossRefGoogle Scholar
  41. 41.
    Bažant ZP, Kazemi MT (1990) Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete. Int J Fract 44:111–131CrossRefGoogle Scholar
  42. 42.
    Tang T, Bažant ZP, Yang S, Zollinger D (1996) Variable-notch one-size test method for fracture energy and process zone length. Eng Fract Mech 55(3):383–404CrossRefGoogle Scholar

Copyright information

© RILEM 2018

Authors and Affiliations

  1. 1.Department of Civil, Environmental, and Geo-EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations