Advertisement

Materials and Structures

, 51:100 | Cite as

Enhancing the efficiency of electrochemical desalination of stones: a proton pump approach

  • Jorge Feijoo
  • X. R. Nóvoa
  • Teresa Rivas
  • L. M. Ottosen
Original Article
  • 4 Downloads

Abstract

Soluble salts are among the most harmful alteration agents affecting the building materials. In recent years, several researches have been devoted to counteract alterations induced by soluble salts using electrokinetic techniques. However, the applicability of these techniques for conservation purposes remains limited due to adverse side effects, such as the extreme pH values occurring near the electrodes, which can affect the stone to be treated. The decrease in efficiency of the treatment caused by the dominant transport of H+ and OH groups is also an undesired effect. The reduced duration of these treatments due to the drying of the material in contact with the anode also limits their practical use. To overcome these problems, a new electrokinetic design that includes a so called proton pump is presented in this report. This design is based on placing two electrodes in the anodic compartment in order to modulate the net amount of H+ produced. The design was applied to desalinate sandstone samples contaminated with several soluble salts. The application of this new approach allowed us to establish an additional electroosmotic process at the anode, which was able to increase the duration of the treatment. Moreover, the new setup provided improved pH buffer ability due to the generation of OH in the anodic compartment, which increased the effectiveness of the treatment by hindering the entrance of H+ in the porous structure.

Keywords

Electro-migration Electro-osmosis Desalination Sandstone Soluble salts 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Ottosen LM, Rörig-Dalgaard I (2007) Electrokinetic removal of Ca(NO3)2 from bricks to avoid salt-induced decay. Electrochim Acta 52:3454–3463CrossRefGoogle Scholar
  2. 2.
    Ottosen LM, Rörig-Dalgaard I (2009) Desalination of a brick by application of an electric DC field. Mater Struct 42(7):961–971CrossRefGoogle Scholar
  3. 3.
    Ottosen LM, Christensen IV (2012) Electrokinetic desalination of sandstones for NaCl removal—test of different clay poultices at the electrodes. Electrochim Acta 86:192–202.  https://doi.org/10.1016/j.electacta.2012.06.005 CrossRefGoogle Scholar
  4. 4.
    Ottosen LM, Ferreira CMD, Christensen IV (2010) Electrokinetic desalination of glazed ceramic tiles. J Appl Electrochem 40:1161–1171CrossRefGoogle Scholar
  5. 5.
    Feijoo J, Ottosen LM, Pozo-Antonio I (2015) Influence of the properties of granite and sandstone in the desalination process by electrokinetic technique. Electrochim Acta 181:280–287CrossRefGoogle Scholar
  6. 6.
    Feijoo J, Nóvoa XR, Rivas T, Mosquera MJ, Taboada J, Montojo C, Carrera F (2012) Granite desalination using electromigration. Influence of type of granite and saline contaminant. J Cult Herit 14(5):365–376CrossRefGoogle Scholar
  7. 7.
    Feijoo J, Matyscak O, Ottosen LM, Rivas T, Nóvoa XR (2017) Electrokinetic desalination of protruded areas of stone avoiding the direct contact with electrodes. Mater Struct 50:82.  https://doi.org/10.1617/s11527-016-0946-x CrossRefGoogle Scholar
  8. 8.
    Matyščák O, Ottosen LM, Rörig-Dalgaard I (2014) Desalination of salt damaged Obernkirchen sandstone by an applied DC field. Constr Build Mater 71:561–569CrossRefGoogle Scholar
  9. 9.
    Ottosen LM, Christensen IV, Rörig-Dalgaard I (2012) Electrochemical desalination of salt infected limestone masonry of a historic warehouse. In: Proceedings structural faults and repair, Edinburgh 2012Google Scholar
  10. 10.
    Ottosen LM, Rörig-Dalgaard I, Villumsen A (2008) Electrochemical removal of salts from masonry—experiences from pilot scale. Salt weathering on buildings and stone sculptures. In: Proceedings from the international conference 22–24 Oct 2008, Technical University of Denmark, The National Museum Copenhagen, DenmarkGoogle Scholar
  11. 11.
    Ottosen LM, Pedersen AJ, Rörig-Dalgaard I (2007) Salt-related problems in brick masonry and electrokinetic removal of salts. J Build Apprais 3(3):181–194CrossRefGoogle Scholar
  12. 12.
    Feijoo J, Rivas T, Nóvoa XR, de Rosario I, Otero J (2017) In situ desalination of a granitic column by the electrokinetic method. Int J Archit Herit.  https://doi.org/10.1080/15583058.2017.1370509 Google Scholar
  13. 13.
    Auras M (2008) Poultices and mortars for salt contaminated masonry and stone objects. In: Proceedings of international conference salt weathering on buildings and stone sculptures, 22–24 Oct 2008, The National Museum Copenhagen, Denmark, Technical University of DenmarkGoogle Scholar
  14. 14.
    Kamran K, van Soestbergen M, Huinink HP, Pel L (2012) Inhibition of electrokinetic ion transport in porous materials due to potential drops induced by electrolysis. Electrochim Acta 78:229–235CrossRefGoogle Scholar
  15. 15.
    Rörig-Dalgaard I (2012) Development of a poultice for electrochemical desalination of porous buildings materials: desalination effect and pH changes. Mater Struct.  https://doi.org/10.1617/s11527-012-9946-7 Google Scholar
  16. 16.
    Ottosen LM, Rörig-Dalgaard I (2006) Drying brick masonry by electroosmosis. In: Proceedings from 7th international Masonry conference, London, UK, 2006, pp 31–41Google Scholar
  17. 17.
    Liu Y, Shi X (2012) Ionic transport in cementations materials under an externally applied electric field: finite element modeling. Constr Build Mater 27:450–460Google Scholar
  18. 18.
    Li C, Man H, Song C, Gao W (2013) Fracture analysis of piezoelectric materials using the scaled boundary finite element method. Eng Fract Mech 97:52–71CrossRefGoogle Scholar
  19. 19.
    Zhang TY, Gao CF (2004) Fracture behaviors of piezoelectric materials. Theor Appl Fract Mech 41:339–379CrossRefGoogle Scholar
  20. 20.
    Xie T, Fan CY, Liu HT, Zhang TY (2014) Effect of electrostatic tractions on the fracture behavior of a piezoelectric material under mechanical and/or electric loading. Theor Appl Fract Mech 69:6–16CrossRefGoogle Scholar
  21. 21.
    Bertolini L, Bolzoni F, Elsener B, Pedeferri P, Andrade C (1996) La realcalinización y la extracción electroquímica de los cloruros en las construcciones de hormigón armado. Materiales de Construcción. Vol 46 nº 244, octubre/noviembre/diciembre 1996Google Scholar
  22. 22.
    Castellote M, Andrade C, Alonso C (2000) Electrochemical removal of chlorides Modelling of the extraction, resulting profiles and determination of the efficient time of treatment. Cem Concr Res 30:615–621CrossRefGoogle Scholar
  23. 23.
    Kamran K, Pel L, Sawdy A, Huinink H, Kopinga K (2012) Desalination of porous building materials by electrokinetics: an NMR study. Mater Struct 45:297–308CrossRefGoogle Scholar
  24. 24.
    Tritthart J (2000) Electrochemical chloride removal. A case study and laboratoty tests. In: Page CL, Bamforth PB, Figg JW (eds) Proceedings of the fourth international symposium on corrosion of reinforcement in concrete construction. Society of Chemical Industry, Cambridge, pp 433–447Google Scholar
  25. 25.
    Bertolini L, Coppola L, Gastaldi M, Redaelli E (2009) Electroosmotic transport in porous construction materials and dehumidification of masonry. Constr Build Mater 23:254–263CrossRefGoogle Scholar
  26. 26.
    Franzoni E (2014) Rising damp removal from historical masonries: a still open challenge. Constr Build Mater 54(2014):123–136CrossRefGoogle Scholar
  27. 27.
    Franzoni E, Bandini S, Graziani G (2014) Rising moisture, salts and electrokinetic effects in ancient masonries: from laboratory testing to on-site monitoring. J Cult Herit 15:112–120CrossRefGoogle Scholar
  28. 28.
    RILEM (Réunion Internationale des Laboratoires d’Essais et de Recherche sur les Matériaux et les Constructions) (1980) Commission 25 PEM. Protection et Erosion des Monuments. Recommandations provisoires. Essais recommandés pour mesurer l’altération des pierres et évaluer l’efficacité des méthodes de traitement. Test No. II. 1: Open porosity and Test II. 2: Bulk and real densitiesGoogle Scholar
  29. 29.
    Benavente D (2002) Modelización y estimación de la durabilidad de materiales pétreos porosos frente a la cristalización de sales. Tesis doctoral 2002 Universidad de AlicanteGoogle Scholar
  30. 30.
    ICR-CNR- Instituto Centrale do restauro- Commisione Normal (1985) Doc. NORMAL 11/85. Assorbimento d’acqua per capilaritá. Coefficiente di assorbimento capillareGoogle Scholar
  31. 31.
    Unhruh J (2001) A revised endpoint for ceramics desalination at the archaeological site of Gordon-Turkey. Stud Conserv 46:81–92CrossRefGoogle Scholar
  32. 32.
    Bourgès A, Vergès-Belmin V (2008) Comparison and optimization of five desalination systems on inner walls of Saint Philibert church in Dijon, France, Salt Weathering on Buildings and Stone Sculptures. In: Proceedings from the international conference 22–24 Oct 2008, Technical University of Denmark, The National Museum Copenhagen, Denmark, pp 29–41Google Scholar
  33. 33.
    Lubelli B, van Hees RPJ (2010) Desalination of masonry structures: fine tuning of pore size distribution of poultices to substrate properties. J Cult Herit 11:10–18CrossRefGoogle Scholar
  34. 34.
    Golder AK, Samanta AN, Ray S (2007) Removal of Cr3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations. J Hazard Mater 141:653–661CrossRefGoogle Scholar
  35. 35.
    Lubelli B, van Hees RPJ, De Clercq H (2011) Fine tuning of desalination poultices: try-outs in practice SWBSS. Limassol, CyprusGoogle Scholar
  36. 36.
    Winkler EM (1997) Stone in architecture: properties, durability, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  37. 37.
    Feijoo J, Ottosen LM, Nóvoa XR, Rivas T, de Rosario I (2017) An improved electrokinetic method to consolidate porous materials. Mater Struct 50:186CrossRefGoogle Scholar
  38. 38.
    Grundl T, Michalski P (1996) Electrosmotically driven water flow in sediments. Water Res 30(4):811–818CrossRefGoogle Scholar
  39. 39.
    Paz-García JM, Johannesson B, Ottosen LM, Ribeiro AB, Rodríguez-Maroto JM (2013) Simulation-based analysis of the differences in the removal rate of chlorides nitrates and sulfates by electrokinetic desalination treatments. Electrochim Acta 89:436–444CrossRefGoogle Scholar
  40. 40.
    Pel L, Sawdy A, Voronina V (2010) Physical principles and efficiency of salt extraction by poulticing. J Cult Herit 11(2010):59–67CrossRefGoogle Scholar

Copyright information

© RILEM 2018

Authors and Affiliations

  1. 1.Dep. Ingeniería de Los Recursos Naturales y Medio AmbienteUniversidad de VigoVigoSpain
  2. 2.Department of Chemical Engineering, ENCOMAT Group, EEIUniversity of VigoVigoSpain
  3. 3.Department of Civil Engineering Building 117Technical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations