Advertisement

Materials and Structures

, 51:96 | Cite as

Recommendation of RILEM TC 241-MCD on interface debonding testing in pavements

RILEM Technical Committee
  • 54 Downloads

Abstract

The following recommendations are based on the chapter III of a State of the Art review conducted by the Task Group 2 of the RILEM Technical Committee 241-MCD ‘‘Mechanisms of cracking and debonding in asphalt and composite pavements’’ (Petit et al in Mechanisms of cracking and debonding in asphalt and composite pavements. Chapter III of the State-of-the-Art report of the RILEM technical committee 241-MCD series, vol 28. Springer, New York, pp 103–154. ISBN 978-3-319-76848-9 2018). The recommendations mostly concern “pure” fracture mode test methods that are currently used worldwide and even standardized, while mixed mode test methods developed by few research teams have not received full attention. This paper intends to give guidance for the application and characterization of interlayer bond testing, looking at the appropriate test methods and the importance of influencing parameters.

Keywords

Debonding Interface Pavement Interlayer bond tests 

Abbreviations

ASTRA

Ancona shear testing research and analysis

AST

Advanced shear tester

CSIC

Composite specimen interface cracking test

DIC

Digital image analysis

DST

Double shear test

LAMI

Layer adhesion measuring instrument

LCB

Laboratorio de Caminos de Barcelona shear test

LISST

Louisiana interlayer shear strength tester

LPDS

Layer-parallel direct shear

NDT

Non destructive test

OFTT

Oregon field torque tester

SBT

Shear bond test

TBT

Tensile bond test

TNBT

Tensile notch bond test

UTW

Ultra-thin white-topping

Notes

Acknowledgements

Thanks to O. Abraham, F. Canestrari, F. Fouchal, A. Guarin, K. S. Hakimzadeh, B. Hill, F. Lebon, R.B. Miro, F.E. Pérez-Jiménez, J.M. Piau, B. Picoux, C. Plati, O. Pop, R. Roque, C. Sullivan and M. Takarli for their contributions in the Chapter III “Interface debonding behavior” of the MCD STAR document from which a part of this recommendation has been provided.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Petit C, Chabot A, Destree A, Raab C (2018) Interface debonding behaviour. In: Buttlar WG, Chabot A, Dave EV, Petit C, Tebaldi G (eds) Mechanisms of cracking and debonding in asphalt and composite pavements. Chapter III of the State-of-the-Art report of the RILEM technical committee 241-MCD series, vol 28. Springer, New York, pp 103–154. ISBN 978-3-319-76848-9Google Scholar
  2. 2.
    Brown SF, Brunton JM (1984) The influence of bonding between bituminous layers. Highw Transp 31(5):16–17Google Scholar
  3. 3.
    Vanelstraete A, Francken L (1997) State-of-the-Art report of RILEM technical committee 157 PRC, systems to prevent reflective cracking in pavements. In: Vanelstraete A, Francken L (eds) RILEM REPORT 18Google Scholar
  4. 4.
    Pouteau B, Balay J-M, Chabot A, De Larrard F (2004) Fatigue test and mechanical study of adhesion between concrete and asphalt. In: 9th International symposium on concrete roads, 3–6 April, Istanbul, TurkeyGoogle Scholar
  5. 5.
    Diakhaté M, Phelipot A, Millien A, Petit C (2006) Shear fatigue behavior of tack coats in pavements. Road Mater Pavement Des 7(2):201–222CrossRefGoogle Scholar
  6. 6.
    Piber H, Canestrari F, Ferrotti G, Lu X, Millien A, Partl MN, Petit C, Phelipot-Mardelle A, Raab C (2009) RILEM interlaboratory test on interlayer bonding of asphalt pavements. 7th International RILEM symposium ATCBM09 on advanced testing and characterization of bituminous materials, Rhodes, Greece, vol 2, pp 1181–1189Google Scholar
  7. 7.
    Raab C, Partl MN Abd, El Halim AO (2009) Evaluation of interlayer shear bond devices for asphalt pavements. Baltic J Road Bridge Eng 4(4):176–195CrossRefGoogle Scholar
  8. 8.
    Partl MN, Bahia HU, Canestrari F, de la Roche C, Di Benedetto H, Piber H, Sybilski D (eds) 2013 Advances in interlaboratory testing and evaluation of bituminous materials. RILEM State-of-the-Art Reports of the RILEM Technical Committee 206-ATB, vol 9, XIIGoogle Scholar
  9. 9.
    Destrée A, De Visscher J, Piérard N, Vanelstraete A (2015) Field study to investigate the impact of conditions of application of tack coats on the interlayer bond strength. 8th International RILEM SIB symposium, October 7–9, 2015, Ancona, ItalyGoogle Scholar
  10. 10.
    Destrée A, De Visscher J, Vanelstraete A (2016) Field study to evaluate different pre-normative interlayer adhesion tests. In: Proceedings of the 6th Eurasphalt & Eurobitume Congress, p 11, 1–3 June 2016—Prague Congress CentreGoogle Scholar
  11. 11.
    Chabot A, Buttlar B, Dave E, Petit C, Tebaldi G (eds) (2016) Proceedings of the 8th RILEM international conference on mechanisms of cracking and debonding in pavements. Springer Series: RILEM Bookseries, vol 13.  https://doi.org/10.1007/978-94-024-0867-6
  12. 12.
    Chabot A, Petit C (2017) Mechanisms of cracking and debonding in pavements: debonding mechanisms in various interfaces between layers. Eur J Environ Civ Eng 11(sup1):1–2.  https://doi.org/10.1080/19648189.2017.1361649 CrossRefGoogle Scholar
  13. 13.
    Chabot A, Hammoum F, Hun M (2017) A 4pt bending bond test approach to evaluate water effect in a composite beam. Eur J Environ Civ Eng 21(supp 1):54–69.  https://doi.org/10.1080/19648189.2017.1320237 CrossRefGoogle Scholar
  14. 14.
    Destrée A, De Visscher J (2017) Impact of tack coat application conditions on the interlayer bond strength. Eur J Environ Civ Eng 21(supp 1):3–13.  https://doi.org/10.1080/19648189.2017.1285252 CrossRefGoogle Scholar
  15. 15.
    Ktari R, Fouchal F, Millien A, Petit C (2017) Surface roughness: a key parameter in pavement interface design. Eur J Environ Civ Eng 21(supp 1):27–42.  https://doi.org/10.1080//19648189.2017.1304284 CrossRefGoogle Scholar
  16. 16.
    Mateos A, Harvey J, Paniagua F, Liu AF (2017) Mechanical characterisation of concrete-asphalt interface in bonded concrete overlays of asphalt pavements. Eur J Environ Civ Eng 21(supp 1):43–53.  https://doi.org/10.1080/19648189.2017.1311808 CrossRefGoogle Scholar
  17. 17.
    Raab C, Arraigada M, Partl N, Schiffmann F (2017) Cracking and interlayer bonding performance of reinforced asphalt pavements. Eur J Environ Civ Eng 21(supp 1):14–26.  https://doi.org/10.1080/19648189.2017.1306462 CrossRefGoogle Scholar
  18. 18.
    BLPC (1979) Concrete pavements: problems raised by the presence of water in their structure (Chaussées en béton: problèmes posés par la présence d’eau dans leur structure). Bulletin de liaison des laboratoires des ponts et chaussées, special issue, 8 (in French)Google Scholar
  19. 19.
    Fuchs F., Jasienski A. (1997) Le phénomène du “Punch-Out” sur les autoroutes belges en béton armé continu – causes, effets et remèdes. Bulletin from the Federation de l’industrie cimentière Belge and the Centre de Recherches routières Belge (in French). www.brrc.be/pdf/bulletin/bul30t.pdf
  20. 20.
    Bergeron G, Paradis M, Tourangeau G (2014) Réparation des nids-de-poule. Info DLC. Bulletin d’information technique 19(1) (in French)Google Scholar
  21. 21.
    Santagata Felice A, Ferrotti G, Partl MN, Canestrari F (2009) Statistical investigation of two different interlayer shear test methods. Mater Struct 42(6):705–714CrossRefGoogle Scholar
  22. 22.
    prEN 12697-48 (2015) Bituminous mixtures—Test methods for hot mix asphalt—Part 48: interlayer bondingGoogle Scholar
  23. 23.
    BRRC (2012) MM—MPT—02.02, Tensile adhesion test, Belgian Road research Centre—BRRC working method for the determination of bond strength to underlayersGoogle Scholar
  24. 24.
    LC 25-010 (2016) Mesure de la force de liaison avec un appareil de mesure d’adhésion des couches. Méthode d’essai LC25-010, Secteur – liants hydrocarbonés, Transports Québec, December 15Google Scholar
  25. 25.
    Tschegg EK (1986) Equipment and appropriate specimen shapes for tests to measure fracture values, AT No. 390328, Austrian Patent Office, Vienna, AustriaGoogle Scholar
  26. 26.
    Brühwiler E, Wittmann FH (1990) The wedge splitting test, a new method of performing stable fracture mechanics tests. Eng Fract Mech 35(1–3):117–125CrossRefGoogle Scholar
  27. 27.
    ASTM D7313-07a (2008) Standard test method for determining fracture energy of asphalt-aggregate mixtures using the disk-shaped compact tension geometry. ASTM Volume 04.03 Road and Paving MaterialsGoogle Scholar
  28. 28.
    Lugmayr R, Jamek M, Tschegg EK (2009) Mechanism of fatigue crack propagation and fracture behavior in bituminous roads. In: Loizos A, Partl MN, Scarpas T, Al Qadi IL (eds) Advanced testing and characterization of bituminous materials. Taylor & Francis, London, pp 807–816Google Scholar
  29. 29.
    Hakimzadeh S, AbayKebede N, Buttlar WG, Ahmeda S, Exline M (2012) Development of fracture-energy based interface bond test for asphalt concrete. Road Mater Pavement Des 13(Sup 1):76–87Google Scholar
  30. 30.
    Gharbi M, Nguyen ML, Trichet S, Chabot A (2017) Characterisation of the bond between asphalt layers and glass fiber grid with help of a Wedge Splitting Test. BCRRA 2017, Athens June 28–30. In: CRC Press (Verlag) -Taylor & Francis Group proceedings, pp 1517–1524. ISBN 978-1-138-29595-7.  https://doi.org/10.1201/9781315100333-217
  31. 31.
    Raab C, Partl MN (2004) Interlayer shear performance: experience with different pavement structures. In: The proceedings of the 3rd Eurasphalt & Eurobitume Congress, Vienna, Austria, 12–14 May, vol 1, pp 535–545. ISBN 90-802884-4-6Google Scholar
  32. 32.
    Uzan J, Livneh M, Eshed Y (1978) Investigation of adhesion properties between asphaltic concrete layers. Asph Paving Technol 47:495–521Google Scholar
  33. 33.
    Leutner R (1979) Untersuchung des Schichtverbundes beim bituminösen Oberbau. Bitumen 41(3):84–91Google Scholar
  34. 34.
    Raab C, Partl MN (November 1999) Methoden zur Beurteilung des Schichtenverbunds von Asphaltbelägen. Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation, Bundesamt für Strassen, Report No 442Google Scholar
  35. 35.
    Mirò R, Pérez Jiménez F, Borras Gonzalez JM (2003) Evaluation of the effect of tack coats. LCB shear test. 6th RILEM symposium PTEBM”03, Zurich, Switzerland, pp 550–556Google Scholar
  36. 36.
    Petit C, Diakhaté M, Millien A, Pouteau B (2009) Pavement design for curved road sections. Road Mater Pavement Des 10(3):609–624Google Scholar
  37. 37.
    Partl MN, Raab C (1999) Shear adhesion between top layers of fresh asphalt pavements in Switzerland. In: Proceedings, 7th conference on asphalt pavements for Southern Africa, CAPSA ‘99, Victory Falls, Zimbabwe, vol 5, pp 130–137Google Scholar
  38. 38.
    Raab C (2010) Development of a framework for standardisation of interlayer bond of asphalt pavements. Ph.D. thesis, Department of Civil and Environmental Engineering, Carleton University, Ottawa, CanadaGoogle Scholar
  39. 39.
    West RC, Zhang J, Moore J (2005) Evaluation of bond strength between pavement layers. National Center for Asphalt Technology, NCAT Report 05-08Google Scholar
  40. 40.
    Romanoschi SA, Metcalf JB (2002) The characterization of pavement layer interfaces. In: Proceedings of the 9th international conference on asphalt pavements, CopenhagenGoogle Scholar
  41. 41.
    Mohammad L, Elseifi MA, Bae A, Patel N, Button J, Scherocman JA (2012) Optimization of tack coat for HMA placement. NCHRP Report 712Google Scholar
  42. 42.
    Zofka A, Maliszewski M, Bernier A, Josen R, Vaitkus A, Kleizienė R (2015) Advanced shear tester for evaluation of asphalt concrete under constant normal stiffness conditions. RMPD 16(sup1):187–210.  https://doi.org/10.1080/14680629.2015.1029690 Google Scholar
  43. 43.
    Destrée A, De Visscher J, Vanelstraete A (2012) Evaluation of tack coat performance for thin and ultra-thin asphalt pavements. 5th Eurasphalt & Eurobitume Congress, 13–15th June 2012, IstanbulGoogle Scholar
  44. 44.
    Zahw MA (1995) Development of testing framework for evaluation of rutting resistance of asphalt mixes. Ph.D. Thesis, Carleton University, Ottawa, CanadaGoogle Scholar
  45. 45.
    Choi Y, Collop A, Airey G, Elliot R (2005) A comparison between interface properties measured using the Leutner test and the torque test. J Assoc Asph Paving Technol 74E. ISSN 1553-5576Google Scholar
  46. 46.
    Tran Q-T, Toumi A, Granju J-L (2006) Experimental and numerical investigation of the debonding interface between an old concrete and an overlay. Mater Struct 39(3):379–389CrossRefGoogle Scholar
  47. 47.
    Turatsinze A, Beushausen H, Gagné R, Granju J-L, Silfwerbrand J, Walter R (2011) ‘Chapter Debonding’. In: Bissonnette B, Courard L, Fowler DW, Granju J-L (eds) State-of-the-Art report of the RILEM technical committee 193-RLS series, vol 3, pp 107–139Google Scholar
  48. 48.
    Tran Q-T, Toumi A, Turatsinze A (2011) Delamination of thin bonded cement-based overlays: analytical analysis. Mater Struct 44(1):43–51CrossRefGoogle Scholar
  49. 49.
    Hun M, Chabot A, Hammoum F (2012) A four point bending test for the bonding evaluation of composite pavement. In: Proceedings of the 7th Rilem international conference on cracking in pavements, June 20–22, Delft, The Netherlands. RILEM Bookseries 4:51–60.  https://doi.org/10.1007/978-94-007-4566-7_6
  50. 50.
    Chabot A, Hun M, Hammoum F (2013) Mechanical analysis of a mixed mode debonding test for “composite” pavements. Constr Build Mater 40:1076–1087.  https://doi.org/10.1016/j.conbuildmat.2012.11.027 CrossRefGoogle Scholar
  51. 51.
    Barman M, Vandenbossche J, Mu F, Gatti K (2011) Development of design guide for thin and ultra-thin concrete overlays of existing asphalt pavements, task 1 report: compilation and review of existing performance data and information. Technical Report, FHWA Pooled Fund Study TPF 5-65Google Scholar
  52. 52.
    Chen Y, Tebaldi G, Roque R, Lopp G (2013) Development of a composite specimen interface cracking (CSIC) test for top-down cracking. J Test Eval 41(4):625–634.  https://doi.org/10.1520/JTE20120002 CrossRefGoogle Scholar
  53. 53.
    Raab C, Abd El Halim AO, Partl MN (2011) Interlayer bond testing using a model material. Constr Build Mater 26:190–199.  https://doi.org/10.1016/j.conbuildmat.2011.06.009 CrossRefGoogle Scholar
  54. 54.
    Raab C, Partl M.N (2010) Temperature dependency of interlayer shear testing. Transport Research Arena Europe TRA 2010, Brussels, BelgiumGoogle Scholar
  55. 55.
    Buttlar WG, Hill BC, Kim YR, Kutay ME, Millien A, Montepara A, Paulino GH, Petit C, Pop IO, Romeo E, Roncella R, Safavizadeh SA, Tebaldi G, Wargo A (2014) Digital image correlation techniques to investigate strain fields and cracking phenomena in asphalt materials. Mater Struct 47(8):1373–1390CrossRefGoogle Scholar
  56. 56.
    Chabot A, Tran QD, Ehrlacher A (2007) A modeling to understand where a vertical crack can propagate in pavements. In: Taylor & Francis Group proceedings, international conference on advanced characterization of pavement and soil engineering materials, Athens June 20–22, 2007, vol 1, pp 431–440. ISBN 10: 0415448824Google Scholar

Copyright information

© RILEM 2018

Authors and Affiliations

  1. 1.Université de LimogesEgletonsFrance
  2. 2.IFSTTAR/MASTNantesFrance
  3. 3.Belgian Road Research Centre (BRRC)BrusselsBelgium
  4. 4.EMPA, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland

Personalised recommendations