Characterization of the terrace-defect interfaces using in situ straining techniques

Abstract

Terrace-defect interface (TDI) is defined as coherent interface with terraced defect structures, accompanied elastic strain associated with dislocation (b) and step height (h) characters. Basic knowledge of the elastic strain related motion mechanisms of TDI should help us to develop materials with desired properties and microstructures. Recently, in situ straining methods have emerged as powerful tools to investigate the microstructure evolution at different length-scale. In this review, we surveyed the recent advances of in situ straining on quantifying the TDI via diffraction-based and imaging-based methods, such as in situ optical microscopy, in situ X-ray diffraction, in situ scanning electron microscopy and in situ transmission electron microscopy (TEM). Among these methods, in situ high-resolution TEM possesses possibility to monitor the local strain and interface microstructure evolution simultaneously at atomic-scale. If combined with high throughput local strain analysis tools, this technique will motivate further experimental, theoretical and simulation studies on TDI related materials development.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1.

    J.P. Hirth, G. Hirth, J. Wang, Disclinations and disconnections in minerals and metals. Proc. Natl. Acad. Sci. USA 117(1), 201915140 (2019)

    Google Scholar 

  2. 2.

    J.P. Hirth, J. Wang, C.N. Tomé, Disconnections and other defects associated with twin interfaces. Prog. Mater. Sci. 83, 417 (2016)

    Article  Google Scholar 

  3. 3.

    I.J. Beyerlein, X. Zhang, A. Misra, Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44(1), 329 (2014)

    CAS  Article  Google Scholar 

  4. 4.

    J. Wang, X. Zhang, Twinning effects on strength and plasticity of metallic materials. MRS Bull. 41(4), 274 (2016)

    Article  CAS  Google Scholar 

  5. 5.

    D. Bufford, Y. Liu, Y. Zhu, Z. Bi, Q.X. Jia, H. Wang, X. Zhang, Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1(1), 51 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    J. Tu, X.Y. Zhang, Z.M. Zhou, C. Huang, Structural characterization of 1012 twin tip in deformed magnesium alloy. Mater. Charact. 110, 39 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    G. Bertotti, I. Mayergoyz, D. Damjanovic, Hysteresis in piezoelectric and ferroelectric materials. Sci. Hysteresis III(5), 337 (2006)

    Google Scholar 

  8. 8.

    M. Foeth, P. Stadelmann, P.A. Buffat, Quantitative determination of the thickness of ferroelectric domain walls using weak beam transmission electron microscopy. Ultramicroscopy 75(4), 203 (1999)

    CAS  Article  Google Scholar 

  9. 9.

    K.M. Yang, G.S. Liu, H.Y. Ma, J. Song, N.Q. Chen, Y.Q. Wang, D. Chen, Y. Liu and T.X. Fan. Graphene template effect on helium precipitation at metal surfaces through the formation of tunneled dislocation networks. Submited.

  10. 10.

    Y. Liu, D. Bufford, H. Wang, C. Sun, X. Zhang, Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 59(5), 1924 (2011)

    CAS  Article  Google Scholar 

  11. 11.

    Y. Chen, Y. Liu, C. Sun, K.Y. Yu, M. Song, H. Wang, X. Zhang, Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater. 60(18), 6312 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    J.M. Howe, R.C. Pond, J.P. Hirth, The role of disconnections in phase transformations. Prog. Mater Sci. 54(6), 792 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    J.P. Hirth, R.C. Pond, Compatibility and accommodation in displacive phase transformations. Prog. Mater Sci. 56(6), 586 (2011)

    CAS  Article  Google Scholar 

  14. 14.

    J.P. Hirth, R.C. Pond, R.G. Hoagland, X.Y. Liu, J. Wang, Interface defects, reference spaces and the Frank-Bilby equation. Prog. Mater Sci. 58(5), 749 (2013)

    Article  Google Scholar 

  15. 15.

    Y. Liu, P.Z. Tang, M.Y. Gong, R.J. McCabe, J. Wang, C.N. Tome, Three-dimensional character of the deformation twin in magnesium. Nat. Commun. 10(1), 3308 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    H.Y. Ma, M.Y. Gong, K.M. Yang, Y. Liu, J.F Nie, T.X. Fan, J. Wang. Kinetics of twinning disconnection in hexagonal metals. Submited.

  17. 17.

    J. Quinta da Fonseca, E.C. Oliver, P.S. Bate, P.J. Withers, Evolution of intergranular stresses during in situ straining of IF steel with different grain sizes. Mater. Sci. Eng., A. 437(1), 26 (2006)

    Article  CAS  Google Scholar 

  18. 18.

    T.R. Bieler, L. Wang, A.J. Beaudoin, P. Kenesei, U. Lienert, In situ characterization of twin nucleation in pure Ti using 3D-XRD. Metall. Mater. Trans. A 45(1), 109 (2013)

    Article  CAS  Google Scholar 

  19. 19.

    H. Abdolvand, M. Majkut, J. Oddershede, S. Schmidt, U. Lienert, B.J. Diak, P.J. Withers, M.R. Daymond, On the deformation twinning of Mg AZ31B: a three-dimensional synchrotron X-ray diffraction experiment and crystal plasticity finite element model. Int. J. Plast. 70, 77 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    J. Yaacoub, Y. Wu, W. Abuzaid, D. Canadinc, H. Sehitoglu, Martensite variant localization effects on fatigue crack growth—the CuZnAl example. Scr. Mater. 171, 112 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    B. Shao, D. Shan, B. Guo, Y. Zong, Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti 22Al 25Nb alloy at room temperature. Int. J. Plast. 113, 18 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    L. Zhao, Q. Guo, Z. Li, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Zhang, Z. Tan, D. Zhang, Strain-rate dependent deformation mechanism of graphene-Al nanolaminated composites studied using micro-pillar compression. Int. J. Plast. 105, 128 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    T. Grieb, F.F. Krause, M. Schowalter, D. Zillmann, R. Sellin, K. Müller-Caspary, C. Mahr, T. Mehrtens, D. Bimberg, and A. Rosenauer. Strain analysis from nano-beam electron diffraction: influence of specimen tilt and beam convergence. Ultramicroscopy (2018).

  24. 24.

    M. Gong, S. Xu, Y. Jiang, Y. Liu, J. Wang, Structural characteristics of 1012 non-cozone twin-twin interactions in magnesium. Acta Mater. 159, 65 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    Y.M. Zhu, S.W. Xu, J.F. Nie, 1011 Twin boundary structures in a Mg–Gd alloy. Acta Mater. 143, 1 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    J.F. Nie, Y.M. Zhu, J.Z. Liu, X.Y. Fang, Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340(6135), 957 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    A. Ostapovets, A. Serra, Characterization of the matrix–twin interface of a (101̄2) twin during growth. Philos. Mag. 94(25), 2827 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    J. Wang, I.J. Beyerlein.: Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals. Modell. Simul. Mater. Sci. Eng. 20(2), (2012).

  29. 29.

    J.H. Lee, T.B. Holland, A.K. Mukherjee, X. Zhang, H. Wang, Direct observation of Lomer-Cottrell locks during strain hardening in nanocrystalline nickel by in situ TEM. Sci. Rep. 3, 1061 (2013)

    Article  CAS  Google Scholar 

  30. 30.

    Y. Cui, N. Li, A. Misra, An overview of interface-dominated deformation mechanisms in metallic nanocomposites elucidated using in situ straining in a TEM. J. Mater. Res. 34(9), 1469 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    H.P. Anwar Ali, A. Budiman, Advances in In situ microfracture experimentation techniques: A case of nanoscale metal–metal multilayered materials. J. Mater. Res. 34(9), 1449 (2019)

    CAS  Article  Google Scholar 

  32. 32.

    B.-Y. Liu, N. Yang, J. Wang, M. Barnett, Y.-C. Xin, D. Wu, R.-L. Xin, B. Li, R.L. Narayan, J.-F. Nie, J. Li, E. Ma, Z.-W. Shan, Insight from in situ microscopy into which precipitate morphology can enable high strength in magnesium alloys. J. Mater. Sci. Technol. 34(7), 1061 (2018)

    Article  Google Scholar 

  33. 33.

    C.C. Aydıner, J.V. Bernier, B. Clausen, U. Lienert, C.N. Tomé, D.W. Brown.: Evolution of stress in individual grains and twins in a magnesium alloy aggregate. Phys. Rev. B. 80(2), (2009).

  34. 34.

    Q. Yu, J. Zhang, Y. Jiang, Direct observation of twinning–detwinning–retwinning on magnesium single crystal subjected to strain-controlled cyclic tension–compression in [0 0 0 1] direction. Philos. Mag. Lett. 91(12), 757 (2011)

    CAS  Article  Google Scholar 

  35. 35.

    A.M. Minor, G. Dehm, Advances in in situ nanomechanical testing. MRS Bull. 44(06), 438 (2019)

    Article  Google Scholar 

  36. 36.

    M.J. Hÿtch, A.M. Minor, Observing and measuring strain in nanostructures and devices with transmission electron microscopy. MRS Bull. 39(2), 138 (2014)

    Article  Google Scholar 

  37. 37.

    H. Wang, Y. Jeong, B. Clausen, Y. Liu, R.J. McCabe, F. Barlat, C.N. Tomé, Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension. Mater. Sci. Eng. A 649, 174 (2016)

    CAS  Article  Google Scholar 

  38. 38.

    Q. Yu, M. Legros, A.M. Minor, In situ TEM nanomechanics. MRS Bull. 40(1), 62 (2015)

    Article  Google Scholar 

  39. 39.

    Y. Liu, N. Li, D. Bufford, J.H. Lee, J. Wang, H. Wang, X. Zhang, In situ nanoindentation studies on detwinning and work hardening in nanotwinned monolithic metals. JOM 68(1), 127 (2015)

    Article  CAS  Google Scholar 

  40. 40.

    Y. Liu, H. Wang, X. Zhang, In situ tem nanoindentation studies on stress-induced phase transformations in metallic materials. JOM 68(1), 226 (2015)

    Article  CAS  Google Scholar 

  41. 41.

    S. Hao, L. Cui, D. Jiang, X. Han, Y. Ren, J. Jiang, Y. Liu, Z. Liu, S. Mao, Y. Wang, Y. Li, X. Ren, X. Ding, S. Wang, C. Yu, X. Shi, M. Du, F. Yang, Y. Zheng, Z. Zhang, X. Li, D.E. Brown, J. Li, A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 339(6124), 1191 (2013)

    CAS  Article  Google Scholar 

  42. 42.

    S.J. Hao, D.Q. Jiang, L.S. Cui, Y.D. Wang, X.B. Shi, Z.H. Nie, D.E. Brown, Y. Ren.: Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite. Appl. Phys. Lett. 99(8), (2011).

  43. 43.

    S. Feng, Q. Guo, Z. Li, G. Fan, Z. Li, D.-B. Xiong, Y. Su, Z. Tan, J. Zhang, D. Zhang, Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars. Acta Mater. 125, 98 (2017)

    CAS  Article  Google Scholar 

  44. 44.

    Y. Liu, J. Jian, Y. Chen, H. Wang, X. Zhang, Plasticity and ultra-low stress induced twin boundary migration in nanotwinned Cu by in situ nanoindentation studies. Appl. Phys. Lett. 104(23), 231910 (2014)

    Article  CAS  Google Scholar 

  45. 45.

    J. Wang, Z. Zhi, C.R. Weinberger, Z. Zhang, T. Zhu, S.X. Mao, In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat. Mater. 14(6), 594 (2015)

    CAS  Article  Google Scholar 

  46. 46.

    Q. Zhu, G. Cao, J. Wang, C. Deng, J. Li, Z. Zhang, S.X. Mao: In situ atomistic observation of disconnection-mediated grain boundary migration. Nat. Commun. 10(1), (2019).

  47. 47.

    N. Li, J. Wang, A. Misra, X. Zhang, J.P. Hirth, Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 59(15), 5989 (2011)

    CAS  Article  Google Scholar 

  48. 48.

    J.S. Chen, Y. Liu, Y. Zhai, T.X. Fan, A new method to reliably determine elastic strain of various crystal structures from atomic-resolution images. Sci. Rep. 9(1), 16399 (2019)

    CAS  Article  Google Scholar 

  49. 49.

    J.S. Chen, Y. Liu, R.J. McCabe, J. Wang and C.N. Tomé.: Quantifying elastic strain near coherent twin interface in magnesium with nanometric resolution. Mater. Charact. 160 (2020)

  50. 50.

    J. Zhang, R.E. Hackenberg, S.C. Vogel, and D.W. Brown.: Equation of state and phase evolution of U-7.7Nb with implications for the understanding of dynamic behavior of U-Nb alloys. Appl. Phys. Lett. 114(22) (2019)

  51. 51.

    J.G. Grossmann, R.W. Strange, and V.P. Suller.: Synchrotron Radiation (Production and Properties),. By P.J. Duke. Oxford Science Publications, 2000. Pp. 251. Price (hardback) £70.00. ISBN 0 19 851758 0. Journal of Synchrotron Radiation. 8(1), 38 (2004).

  52. 52.

    S.R. Kada, P.A. Lynch, J.A. Kimpton, M.R. Barnett, In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy. Acta Mater. 119, 145 (2016)

    CAS  Article  Google Scholar 

  53. 53.

    S. Hao, L. Cui, Y. Shao, J. Jiang, D. Jiang, S. Wang, M. Du, Y. Wang, D.E. Brown, Y. Ren, In situ X-ray diffraction study of deformation behavior in a Fe/NiTi composite. Appl. Phys. Lett. 101(22), 1 (2012)

    Article  CAS  Google Scholar 

  54. 54.

    D. Jiang, S. Hao, J. Zhang, Y. Liu, Y. Ren, L. Cui, In situ synchrotron investigation of the deformation behavior of nanolamellar Ti5Si3/TiNi composite. Scr. Mater. 78–79, 53 (2014)

    Article  CAS  Google Scholar 

  55. 55.

    R. Li, Q. Xie, Y.D. Wang, W. Liu, M. Wang, G. Wu, X. Li, M. Zhang, Z. Lu, C. Geng, T. Zhu, Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction. Proc. Natl. Acad. Sci. USA 115(3), 483 (2018)

    CAS  Article  Google Scholar 

  56. 56.

    C. Gammer, C. Ophus, T.C. Pekin, J. Eckert, A.M. Minor.: Local nanoscale strain mapping of a metallic glass during in situ testing. Appl. Phys. Lett. 112(17) (2018).

  57. 57.

    C. Gammer, V. Burak Ozdol, C.H. Liebscher, A.M. Minor, Diffraction contrast imaging using virtual apertures. Ultramicroscopy 155, 1 (2015)

    CAS  Article  Google Scholar 

  58. 58.

    C. Gammer, J. Kacher, C. Czarnik, O.L. Warren, J. Ciston, A.M. Minor.: Local and transient nanoscale strain mapping during in situ deformation. Appl. Phys. Lett. 109(8) (2016)

  59. 59.

    Y. Deng, C. Gammer, J. Ciston, P. Ercius, C. Ophus, K. Bustillo, C. Song, R. Zhang, D. Wu, Y. Du, Z. Chen, H. Dong, A.G. Khachaturyan, A.M. Minor, Hierarchically-structured large superelastic deformation in ferroelastic-ferroelectrics. Acta Mater. 181, 501 (2019)

    CAS  Article  Google Scholar 

  60. 60.

    T.C. Pekin, C. Gammer, J. Ciston, C. Ophus, A.M. Minor, In situ nanobeam electron diffraction strain mapping of planar slip in stainless steel. Scr. Mater. 146, 87 (2018)

    CAS  Article  Google Scholar 

  61. 61.

    C. Zhang, K.L. Firestein, J.F.S. Fernando, D. Siriwardena, J.E. von Treifeldt, D. Golberg, Recent progress of in situ transmission electron microscopy for energy materials. Adv. Mater. 32(18), e1904094 (2020)

    Article  CAS  Google Scholar 

  62. 62.

    D. Culbertson, Q. Yu, Y. Jiang, In situ observation of cross-grain twin pair formation in pure magnesium. Philos. Mag. Lett. 98(4), 139 (2018)

    CAS  Article  Google Scholar 

  63. 63.

    Q. Yu, Y. Jiang, J. Wang, Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension–compression in the [1010] direction. Scr.ipta Mater. 96, 41 (2015)

    CAS  Article  Google Scholar 

  64. 64.

    C. Efstathiou, H. Sehitoglu, Strain hardening and heterogeneous deformation during twinning in Hadfield steel. Acta Mater. 58(5), 1479 (2010)

    CAS  Article  Google Scholar 

  65. 65.

    K. Anten, B. Scholtes, Formation of macroscopic twin bands and inhomogeneous deformation during cyclic tension-compression loading of the Mg-wrought alloy AZ31. Mater. Sci. Eng. A 746, 217 (2019)

    CAS  Article  Google Scholar 

  66. 66.

    S. Dong, Q. Yu, Y. Jiang, J. Dong, F. Wang, W. Ding, Electron backscatter diffraction observations of twinning–detwinning evolution in a magnesium alloy subjected to large strain amplitude cyclic loading. Mater. Des. (1980–2015) 65, 762 (2015)

    CAS  Article  Google Scholar 

  67. 67.

    M.D. Uchic, P.A. Shade, D.M. Dimiduk, Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39(1), 361 (2009)

    CAS  Article  Google Scholar 

  68. 68.

    Y. Liu, N. Li, M. Arul Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara, C.N. Tomé, Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars. Acta Mater. 135, 411 (2017)

    CAS  Article  Google Scholar 

  69. 69.

    Z. Chen, S. Daly.: Automated identification of deformation twin systems in Mg WE43 from SEM DIC. Mater. Charact. 169 (2020)

  70. 70.

    S. Kondo, T. Mitsuma, N. Shibata, Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries. Sci. Adv. 2(11), e1501926 (2016)

    Article  CAS  Google Scholar 

  71. 71.

    B.-Y. Liu, F. Liu, N. Yang, X.-B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.-F. Nie, Large plasticity in magnesium mediated by pyramidal dislocations. Science 365(6448), 73 (2019)

    CAS  Article  Google Scholar 

  72. 72.

    D. Bufford, Y. Liu, J. Wang, H. Wang, X. Zhang, In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat. Commun. 5, 4864 (2014)

    CAS  Article  Google Scholar 

  73. 73.

    D. Jiang, Z. Jia, H. Yang, Y. Liu, F. Liu, X. Jiang, Y. Ren, L. Cui, Large elastic strains and ductile necking of W nanowires embedded in TiNi matrix. J. Mater. Sci. Technol. 60, 56 (2021)

    Article  Google Scholar 

  74. 74.

    Y. Liu, J. Jian, J.H. Lee, C. Wang, Q.P. Cao, C. Gutierrez, H. Wang, J.Z. Jiang, X. Zhang, Repetitive ultra-low stress induced nanocrystallization in amorphous Cu-Zr-Al alloy evidenced by in situ nanoindentation. Mater. Res. Lett. 2(4), 209 (2014)

    Article  CAS  Google Scholar 

  75. 75.

    Y. Liu, I. Karaman, H. Wang, X. Zhang, Two types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies. Adv. Mater. 26(23), 3893 (2014)

    CAS  Article  Google Scholar 

  76. 76.

    P. Gao, J. Britson, C.T. Nelson, J.R. Jokisaari, C. Duan, M. Trassin, S.H. Baek, H. Guo, L. Li, Y. Wang, Y.H. Chu, A.M. Minor, C.B. Eom, R. Ramesh, L.Q. Chen, X. Pan, Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nat. Commun. 5, 3801 (2014)

    CAS  Article  Google Scholar 

  77. 77.

    Y. Sun, J. Liu, D. Blom, G. Koley, Z. Duan, G. Wang, X. Li.: Atomic-scale imaging correlation on the deformation and sensing mechanisms of SnO2 nanowires. Appl. Phys. Lett. 105(24) (2014)

  78. 78.

    N. Li, A. Misra, S. Shao, J. Wang, Experimental quantification of resolved shear stresses for dislocation motion in TiN. Nano Lett. 15(7), 4434 (2015)

    CAS  Article  Google Scholar 

  79. 79.

    S.R. Spurgeon, C. Ophus, L. Jones, A. Petford-Long, S.V. Kalinin, M.J. Olszta, R.E. Dunin-Borkowski, N. Salmon, K. Hattar, W.D. Yang, R. Sharma, Y. Du, A. Chiaramonti, H. Zheng, E.C. Buck, L. Kovarik, R.L. Penn, D. Li, X. Zhang, M. Murayama, and M.L. Taheri. Towards data-driven next-generation transmission electron microscopy. Nat Mater. (2020)

  80. 80.

    D. Weber, A. Clausen, R.E. Dunin-Borkowski. Next-generation information technology systems for fast detectors in electron microscopy, in S.P. Singh, A.R. Paterson, L.J. Wendelberger, C.M. Fancher, B.J. Reich, R.C. Smith, A.G. Wilson, J.L. Jones (eds.) Handbook on Big Data and Machine Learning in the Physical Sciences, (World Scientific, 2020), pp. 83–120

  81. 81.

    G.H. Weber, C. Ophusz, L. Ramakrishnan, Automated Labeling of Electron Microscopy Images Using Deep Learning, in Machine Learning in HPC EnvironmentsInternational Conference for High Performance Computing, Networking (Storage and Analysis, Dallas, USA, 2018).

    Google Scholar 

  82. 82.

    B. Lee, S. Yoon, J.W. Lee, Y. Kim, J. Chang, J. Yun, J.C. Ro, J.S. Lee, J.H. Lee, Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis. ACS Nano (2020).

  83. 83.

    C.H. Lee, A. Khan, D. Luo, T.P. Santos, C. Shi, B.E. Janicek, S. Kang, W. Zhu, N.A. Sobh, A. Schleife, B.K. Clark, P.Y. Huang, Deep learning enabled strain mapping of single-atom defects in two-dimensional transition metal dichalcogenides with sub-picometer precision. Nano Lett. 20(5), 3369 (2020)

    CAS  Article  Google Scholar 

  84. 84.

    L. Yao, Z. Ou, B. Luo, C. Xu, Q. Chen, Machine learning to reveal nanoparticle dynamics from liquid-phase TEM videos. ACS Cent. Sci. 6(8), 1421 (2020)

    CAS  Article  Google Scholar 

  85. 85.

    A. AzizEzzat, M. Bedewy, Machine learning for revealing spatial dependence among nanoparticles: understanding catalyst film dewetting via gibbs point process models. J. Phys. Chem. C 124(50), 27479 (2020)

    CAS  Article  Google Scholar 

Download references

Acknowledgment

Y. Liu acknowledge the financial support of the National Science Foundation of China (No. 51901129).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yue Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, J., Wang, J. & Liu, Y. Characterization of the terrace-defect interfaces using in situ straining techniques. Journal of Materials Research (2021). https://doi.org/10.1557/s43578-021-00121-9

Download citation