The validity of Mn element on enhanced energy storage performance and fatigue resistance of Mn‐doped 0.7Na0.5Bi0.5TiO3–0.3Sr0.7Bi0.2TiO3 lead‐free ferroelectric ceramics (BNT–BST–xMn) is certified by doping. The effects of Mn modification on the dielectric behavior, ferroelectric, energy storage properties, and AC impedance are comprehensively investigated. It is found that the average grain size of the ceramics modified by Mn additions is reduced slightly. Moreover, the relaxor properties are evidently enhanced with the increased Mn content. The AC impedance spectra can even better clarify the dielectric response and relaxor behavior. The results suggest that both of the dielectric response and relaxor behavior are determined by defects especially concentration of the oxygen vacancy. The superior energy storage properties are realized at x = 0.05 with an energy storage density (Wrec) of 1.33 J/cm3 as well as energy storage efficiency (η) of 86.2% at 100 kV/cm, accompanied with a superior thermal stability. BNT–BST–5Mn ceramics can maintain a stable energy storage performance within 106 fatigue cycles, indicating an excellent fatigue resistance.
This is a preview of subscription content, access via your institution.









References
- 1.
M. Chandrasekhar and P. Kumar: Synthesis and characterizations of BNT‐BT and BNT‐BT‐KNN ceramics for actuator and energy storage applications. Ceram. Int. 41, 5574–5580 (2015).
- 2.
J. Roedel, W. Jo, K.T.P. Seifert, E. Anton, T. Granzow, and D. Damjanovic: Perspective on the development of lead‐free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009).
- 3.
T. Li, H. Fan, C. Long, G. Dong, and S. Sun: Defect dipoles and electrical properties of magnesium B‐site substituted sodium potassium niobates. J. Alloys Compd. 609, 60–67 (2014).
- 4.
P.Y. Fan, S.T. Zhang, J.W. Xu, J.D. Zang, C. Samart, T. Zhang, H. Tan, D. Salamon, H.B. Zhang, and G. Liu: Relaxor/antiferroelectric composites: A solution to achieve high energy storage performance in lead‐free dielectric ceramics. J. Mater. Chem. C 8, 5681–5691 (2020).
- 5.
L. Zhao, Q. Liu, J. Gao, S. Zhang, and J. Li: Lead‐free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29, 1701824 (2017).
- 6.
A. Kumar, V.V.B. Prasad, K.C.J. Raju, and A.R. James: Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics. J. Mater. Sci.: Mater. Electron. 26, 3757–3765 (2015).
- 7.
W. Li, D. Zhou, and L. Pang: Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3‐based ceramics. Appl. Phys. Lett. 110, 032903 (2017).
- 8.
R. Sumang, D.P. Cann, N. Kumar, and T. Bongkarn: Large strain in lead‐free piezoelectric (1−x−y)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3–yBi0.5Li0.5TiO3 system near MPB prepared via the combustion technique. Ceram. Int. 41, 127–135 (2015).
- 9.
F. Gao, X. Dong, C. Mao, H. Zhang, F. Cao, and G. Wang: Poling temperature tuned electric‐field‐induced ferroelectric to antiferroelectric phase transition in 0.89Bi0.5Na0.5TiO3‐0.06 BaTiO3‐0.05K0.5Na0.5NbO3 ceramics. J. Appl. Phys. 110, 094109 (2011).
- 10.
X. Qiao, X. Chen, H. Lian, J. Zhou, and P. Liu: Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J. Eur. Ceram. Soc. 36, 3995–4001 (2016).
- 11.
H. Nagata and T. Takenaka: Additive effects on electrical properties of Bi1/2Na1/2TiO3 ferroelectric ceramics. J. Eur. Ceram. Soc. 21, 1299–1302 (2001).
- 12.
J. Roedel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic: Transferring lead‐free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015).
- 13.
H.Y. Tian, D.Y. Wang, D.M. Lin, J.T. Zeng, K.W. Kwok, and H.L.W. Chan: Diffusion phase transition and dielectric characteristics of Bi0.5Na0.5TiO3‐Ba(Hf, Ti)O3 lead‐free ceramics. Solid State Commun. 142, 10–14 (2007).
- 14.
W. Meng, R. Zuo, S. Su, X. Wang, and L. Li: Two‐step sintering and electrical properties of sol‐gel derived 0.94(Bi0.5Na0.5)TiO3‐0.06BaTiO3 lead‐free ceramics. J. Mater. Sci.: Mater. Electron. 22, 1841–1847 (2011).
- 15.
Q. Xu, M.T. Lanagan, X. Huang, J. Xie, L. Zhang, H. Hao, and H. Liu: Dielectric behavior and impedance spectroscopy in lead‐free BNT‐BT‐NBN perovskite ceramics for energy storage. Ceram. Int. 42, 9728–9736 (2016).
- 16.
Y. Wang, Z. Lv, H. Xie, and J. Cao: High energy‐storage properties of (Bi1/2Na1/2)0.94Ba0.06La1‐x ZrxTiO3 lead‐free anti‐ferroelectric ceramics. Ceram. Int. 40, 4323–4326 (2014).
- 17.
Q. Li, C. Zhou, J. Xu, L. Yang, X. Zhang, W. Zeng, C. Yuan, G. Chen, and G. Rao: Tailoring antiferroelectricity with high energy‐storage properties in Bi0.5Na0.5TiO3‐BaTiO3 ceramics by modulating Bi/Na ratio. J. Mater. Sci.: Mater. Electron. 27, 10810–10815 (2016).
- 18.
F. Gao, X. Dong, C. Mao, F. Cao, and G. Wang: c/a Ratio‐dependent energy‐storage density in (0.9‐x)Bi0.5Na0.5TiO3‐xBaTiO3‐0.1K0.5Na0.5NbO3 ceramics. J. Am. Ceram. Soc. 94, 4162–4164 (2011).
- 19.
J. Ding, Y. Liu, Y. Lu, H. Qian, H. Gao, H. Chen, and C. Ma: Enhanced energy‐storage properties of 0.89Bi0.5Na0.5TiO3‐0.06BaTiO3‐0.05K0.5Na0.5NbO3 lead‐free anti‐ferroelectric ceramics by two‐step sintering method. Mater. Lett. 114, 107–110 (2014).
- 20.
N. Xu, Y. Liu, Z. Yu, R. Yao, J. Ye, and Y. Lu: Enhanced energy storage properties of lead‐free (1‐x)Bi0.5Na0.5TiO3‐xSrTiO(3) antiferroelectric ceramics by two‐step sintering method. J. Mater. Sci.: Mater. Electron. 27, 12479–12484 (2016).
- 21.
W.P. Cao, J. Sheng, Y.L. Qiao, L. Jing, Z. Liu, J. Wang, and W.L. Li: Optimized strain with small hysteresis and high energy‐storage density in Mn‐doped NBT‐ST system. J. Eur. Ceram. Soc. 39, 4046–4052 (2019).
- 22.
W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.‐G. Ye, and H. Zhang: Enhanced energy‐storage performance with excellent stability under low electric fields in BNT‐ST relaxor ferroelectric ceramics. J. Mater. Chem. C 7, 281–288 (2019).
- 23.
C. Ang and Z. Yu: High remnant polarization in Sr0.7Bi0.2TiO3‐Na0.5Bi0.5TiO3 solid solutions. Appl. Phys. Lett. 95, 232908 (2009).
- 24.
Q. Li, Z. Yao, L. Ning, S. Gao, B. Hu, G. Dong, and H. Fan: Enhanced energy‐storage properties of (1‐x)(0.7Bi0.5Na0.5TiO3‐0.3Bi0.2Sr0.7TiO3)‐xNaNbO3 lead‐free ceramics. Ceram. Int. 44, 2782–2788 (2018).
- 25.
X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, and Z. Yang: Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3‐Sr0.7Bi0.2TiO3 ceramics. J. Eur. Ceram. Soc. 39, 4778–4784 (2019).
- 26.
Q.‐N. Li, C.‐R. Zhou, J.‐W. Xu, L. Yang, X. Zhang, W.‐D. Zeng, C.‐L. Yuan, G.‐H. Chen, and G.‐H. Rao: Ergodic relaxor state with high energy storage performance induced by doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 ceramics. J. Electron. Mater. 45, 5146–5151 (2016).
- 27.
P. Ren, Z. Liu, X. Wang, Z. Duan, Y. Wan, F. Yan, and G. Zhao: Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3‐Sr0.8Bi0.1 square 0.1TiO3 based ceramics. J. Alloys Compd. 742, 683–689 (2018).
- 28.
W. Li, D. Zhou, and L. Pang: Structure and energy storage properties of Mn‐doped (Ba,Sr)TiO3‐MgO composite ceramics. J. Mater. Sci.: Mater. Electron. 28, 8749–8754 (2017).
- 29.
P. Peng, H. Nie, Z. Liu, W. Ren, F. Cao, G. Wang, and X. Dong: Enhanced ferroelectric properties and thermal stability of Mn‐doped 0.96(Bi‐0.5 Na‐0.5)TiO3‐0.04BiAlO(3) ceramics. J. Am. Ceram. Soc. 100, 1030–1036 (2017).
- 30.
C. Wang, X. Lou, T. Xia, and S. Tian: The dielectric, strain and energy storage density of BNT‐BKHxTi1‐x piezoelectric ceramics. Ceram. Int. 43, 9253–9258 (2017).
- 31.
J. Shi, H. Fan, X. Liu, and A.J. Bell: Large electrostrictive strain in Bi0.5Na0.5 TiO3‐BaTiO3‐Sr0.7Bi0.2TiO3 solid solutions. J. Am. Ceram. Soc. 97, 848–853 (2014).
- 32.
D. Lin, K.W. Kwok, and H.L.W. Chan: Structure and electrical properties of Bi0.5Na0.5TiO3‐BaTiO3‐Bi0.5Li0.5TiO3 lead‐free piezoelectric ceramics. Solid State Ionics 178, 1930–1937 (2008).
- 33.
Y. Wang, Z. Shen, Y. Li, Z. Wang, W. Luo, and Y. Hong: Optimization of energy storage density and efficiency in BaxSr1‐xTiO3 (x < = 0.4) paraelectric ceramics. Ceram. Int. 41, 8252–8256 (2015).
- 34.
P. Sellappan, C. Tang, J. Shi, and J.E. Garay: An integrated approach to doped thin films with strain‐tunable magnetic anisotropy: Powder synthesis, target preparation and pulsed laser deposition of Bi:YIG. Mater. Res. Lett. 5, 41–47 (2017).
- 35.
M. Chandrasekhar, Sonia, and P. Kumar: Synthesis and characterizations of NaNbO3 modified BNT‐BT‐BKT ceramics for energy storage applications. Physica B 497, 59–66 (2016).
- 36.
Z. Liu, H. Fan, S. Lei, X. Ren, and C. Long: Duplex structure in K0.5Na0.5NbO3‐SrZrO3 ceramics with temperature‐stable dielectric properties. J. Eur. Ceram. Soc. 37, 115–122 (2017).
- 37.
M. Li, L. Li, J. Zang, and D.C. Sinclair: Donor‐doping and reduced leakage current in Nb‐doped Na0.5Bi0.5TiO3. Appl. Phys. Lett. 106, 102904 (2015).
- 38.
M. Yao, Y. Pu, L. Zhang, and M. Chen: Enhanced energy storage properties of (1‐x)Bi0.5Na0.5TiO3‐xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. Mater. Lett. 174, 110–113 (2016).
- 39.
Q. Li, J. Wang, Y. Ma, L. Ma, G. Dong, and H. Fan: Enhanced energy‐storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3‐0.06BaTiO3 modified by CaZrO3. J. Alloys Compd. 663, 701–707 (2016).
- 40.
W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, and W.D. Fei: Large electrocaloric response and high energy‐storage properties over a broad temperature range in lead‐free NBT‐ST ceramics. J. Eur. Ceram. Soc. 36, 593–600 (2016).
- 41.
Z. Liu, P. Ren, C. Long, X. Wang, Y. Wan, and G. Zhao: Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538–544 (2017).
- 42.
Y. Pu, M. Yao, L. Zhang, and P. Jing: High energy storage density of 0.55Bi0.5Na0.5TiO3‐0.45Ba0.85Ca0.15Ti0.9‐xZr0.1SnxO3 ceramics. J. Alloys Compd. 687, 689–695 (2016).
- 43.
C. Long, Q. Chang, Y. Wu, W. He, Y. Li, and H. Fan: New layer‐structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5‐xTi4O15: Crystal structures, electrical properties and conduction behaviors. J. Mater. Chem. C 3, 8852–8864 (2015).
- 44.
Z. Liu, H. Fan, and M. Li: High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core‐shell microstructures. J. Mater. Chem. C 3, 5851–5858 (2015).
- 45.
G. Liu, H. Fan, J. Shi, and Z. Liu: Large strain and relaxation behavior in CeO2 doped Bi0.487Na0.427K0.06Ba0.026TiO3 piezoceramics. Ceram. Int. 42, 3938–3946 (2016).
- 46.
M. Li and D.C. Sinclair: The extrinsic origins of high permittivity and its temperature and frequency dependence in Y0.5Ca0.5MnO3 and La1.5Sr0.5NiO4 ceramics. J. Appl. Phys. 111, 759 (2012).
- 47.
B. Hu, H. Fan, L. Ning, S. Gao, Z. Yao, and Q. Li: Enhanced energy‐storage performance and dielectric temperature stability of (1‐x)(0.65Bi0.5Na0.5TiO3‐0.35Bi0.1Sr0.85TiO3)‐xKNbO3 ceramics. Ceram. Int. 44, 10968–10974 (2018).
Acknowledgments
This work is supported by the National Nature Science Foundation (51672220), the 111 Program (B08040) of MOE, the National Defense Science Foundation (32102060303), the National Key Research and Development Program of China (No. 2018YFB1106600), the Xi'an Science and Technology Foundation (CXY1706‐5, 2017086CG‐RC049‐XBGY005), the Shaanxi Provincial Science Foundation (2017KW‐018), and the NPU Gaofeng Project (17GH020824) of China. We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for the help.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, J., Fan, H. Enhanced energy storage performance and fatigue resistance of Mn‐doped 0.7Na0.5Bi0.5TiO3– 0.3Sr0.7Bi0.2TiO3 lead‐free ferroelectric ceramics. Journal of Materials Research (2021). https://doi.org/10.1557/s43578-020-00082-5
Received:
Accepted:
Published:
Keywords
- perovskites
- energy storage
- ceramic
- ferroelectric