Enhanced energy storage performance and fatigue resistance of Mn‐doped 0.7Na0.5Bi0.5TiO3– 0.3Sr0.7Bi0.2TiO3 lead‐free ferroelectric ceramics

The validity of Mn element on enhanced energy storage performance and fatigue resistance of Mn‐doped 0.7Na0.5Bi0.5TiO3–0.3Sr0.7Bi0.2TiO3 lead‐free ferroelectric ceramics (BNT–BST–xMn) is certified by doping. The effects of Mn modification on the dielectric behavior, ferroelectric, energy storage properties, and AC impedance are comprehensively investigated. It is found that the average grain size of the ceramics modified by Mn additions is reduced slightly. Moreover, the relaxor properties are evidently enhanced with the increased Mn content. The AC impedance spectra can even better clarify the dielectric response and relaxor behavior. The results suggest that both of the dielectric response and relaxor behavior are determined by defects especially concentration of the oxygen vacancy. The superior energy storage properties are realized at x = 0.05 with an energy storage density (Wrec) of 1.33 J/cm3 as well as energy storage efficiency (η) of 86.2% at 100 kV/cm, accompanied with a superior thermal stability. BNT–BST–5Mn ceramics can maintain a stable energy storage performance within 106 fatigue cycles, indicating an excellent fatigue resistance.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

References

  1. 1.

    M. Chandrasekhar and P. Kumar: Synthesis and characterizations of BNT‐BT and BNT‐BT‐KNN ceramics for actuator and energy storage applications. Ceram. Int. 41, 5574–5580 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    J. Roedel, W. Jo, K.T.P. Seifert, E. Anton, T. Granzow, and D. Damjanovic: Perspective on the development of lead‐free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    T. Li, H. Fan, C. Long, G. Dong, and S. Sun: Defect dipoles and electrical properties of magnesium B‐site substituted sodium potassium niobates. J. Alloys Compd. 609, 60–67 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    P.Y. Fan, S.T. Zhang, J.W. Xu, J.D. Zang, C. Samart, T. Zhang, H. Tan, D. Salamon, H.B. Zhang, and G. Liu: Relaxor/antiferroelectric composites: A solution to achieve high energy storage performance in lead‐free dielectric ceramics. J. Mater. Chem. C 8, 5681–5691 (2020).

    CAS  Article  Google Scholar 

  5. 5.

    L. Zhao, Q. Liu, J. Gao, S. Zhang, and J. Li: Lead‐free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29, 1701824 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    A. Kumar, V.V.B. Prasad, K.C.J. Raju, and A.R. James: Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics. J. Mater. Sci.: Mater. Electron. 26, 3757–3765 (2015).

    CAS  Google Scholar 

  7. 7.

    W. Li, D. Zhou, and L. Pang: Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3‐based ceramics. Appl. Phys. Lett. 110, 032903 (2017).

    Article  CAS  Google Scholar 

  8. 8.

    R. Sumang, D.P. Cann, N. Kumar, and T. Bongkarn: Large strain in lead‐free piezoelectric (1−x−y)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3–yBi0.5Li0.5TiO3 system near MPB prepared via the combustion technique. Ceram. Int. 41, 127–135 (2015).

    Article  CAS  Google Scholar 

  9. 9.

    F. Gao, X. Dong, C. Mao, H. Zhang, F. Cao, and G. Wang: Poling temperature tuned electric‐field‐induced ferroelectric to antiferroelectric phase transition in 0.89Bi0.5Na0.5TiO3‐0.06 BaTiO3‐0.05K0.5Na0.5NbO3 ceramics. J. Appl. Phys. 110, 094109 (2011).

    Article  CAS  Google Scholar 

  10. 10.

    X. Qiao, X. Chen, H. Lian, J. Zhou, and P. Liu: Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J. Eur. Ceram. Soc. 36, 3995–4001 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    H. Nagata and T. Takenaka: Additive effects on electrical properties of Bi1/2Na1/2TiO3 ferroelectric ceramics. J. Eur. Ceram. Soc. 21, 1299–1302 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    J. Roedel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic: Transferring lead‐free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    H.Y. Tian, D.Y. Wang, D.M. Lin, J.T. Zeng, K.W. Kwok, and H.L.W. Chan: Diffusion phase transition and dielectric characteristics of Bi0.5Na0.5TiO3‐Ba(Hf, Ti)O3 lead‐free ceramics. Solid State Commun. 142, 10–14 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    W. Meng, R. Zuo, S. Su, X. Wang, and L. Li: Two‐step sintering and electrical properties of sol‐gel derived 0.94(Bi0.5Na0.5)TiO3‐0.06BaTiO3 lead‐free ceramics. J. Mater. Sci.: Mater. Electron. 22, 1841–1847 (2011).

    CAS  Google Scholar 

  15. 15.

    Q. Xu, M.T. Lanagan, X. Huang, J. Xie, L. Zhang, H. Hao, and H. Liu: Dielectric behavior and impedance spectroscopy in lead‐free BNT‐BT‐NBN perovskite ceramics for energy storage. Ceram. Int. 42, 9728–9736 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Wang, Z. Lv, H. Xie, and J. Cao: High energy‐storage properties of (Bi1/2Na1/2)0.94Ba0.06La1‐x ZrxTiO3 lead‐free anti‐ferroelectric ceramics. Ceram. Int. 40, 4323–4326 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Q. Li, C. Zhou, J. Xu, L. Yang, X. Zhang, W. Zeng, C. Yuan, G. Chen, and G. Rao: Tailoring antiferroelectricity with high energy‐storage properties in Bi0.5Na0.5TiO3‐BaTiO3 ceramics by modulating Bi/Na ratio. J. Mater. Sci.: Mater. Electron. 27, 10810–10815 (2016).

    CAS  Google Scholar 

  18. 18.

    F. Gao, X. Dong, C. Mao, F. Cao, and G. Wang: c/a Ratio‐dependent energy‐storage density in (0.9‐x)Bi0.5Na0.5TiO3‐xBaTiO3‐0.1K0.5Na0.5NbO3 ceramics. J. Am. Ceram. Soc. 94, 4162–4164 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    J. Ding, Y. Liu, Y. Lu, H. Qian, H. Gao, H. Chen, and C. Ma: Enhanced energy‐storage properties of 0.89Bi0.5Na0.5TiO3‐0.06BaTiO3‐0.05K0.5Na0.5NbO3 lead‐free anti‐ferroelectric ceramics by two‐step sintering method. Mater. Lett. 114, 107–110 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    N. Xu, Y. Liu, Z. Yu, R. Yao, J. Ye, and Y. Lu: Enhanced energy storage properties of lead‐free (1‐x)Bi0.5Na0.5TiO3‐xSrTiO(3) antiferroelectric ceramics by two‐step sintering method. J. Mater. Sci.: Mater. Electron. 27, 12479–12484 (2016).

    CAS  Google Scholar 

  21. 21.

    W.P. Cao, J. Sheng, Y.L. Qiao, L. Jing, Z. Liu, J. Wang, and W.L. Li: Optimized strain with small hysteresis and high energy‐storage density in Mn‐doped NBT‐ST system. J. Eur. Ceram. Soc. 39, 4046–4052 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.‐G. Ye, and H. Zhang: Enhanced energy‐storage performance with excellent stability under low electric fields in BNT‐ST relaxor ferroelectric ceramics. J. Mater. Chem. C 7, 281–288 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    C. Ang and Z. Yu: High remnant polarization in Sr0.7Bi0.2TiO3‐Na0.5Bi0.5TiO3 solid solutions. Appl. Phys. Lett. 95, 232908 (2009).

    Article  CAS  Google Scholar 

  24. 24.

    Q. Li, Z. Yao, L. Ning, S. Gao, B. Hu, G. Dong, and H. Fan: Enhanced energy‐storage properties of (1‐x)(0.7Bi0.5Na0.5TiO3‐0.3Bi0.2Sr0.7TiO3)‐xNaNbO3 lead‐free ceramics. Ceram. Int. 44, 2782–2788 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, and Z. Yang: Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3‐Sr0.7Bi0.2TiO3 ceramics. J. Eur. Ceram. Soc. 39, 4778–4784 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Q.‐N. Li, C.‐R. Zhou, J.‐W. Xu, L. Yang, X. Zhang, W.‐D. Zeng, C.‐L. Yuan, G.‐H. Chen, and G.‐H. Rao: Ergodic relaxor state with high energy storage performance induced by doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 ceramics. J. Electron. Mater. 45, 5146–5151 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    P. Ren, Z. Liu, X. Wang, Z. Duan, Y. Wan, F. Yan, and G. Zhao: Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3‐Sr0.8Bi0.1 square 0.1TiO3 based ceramics. J. Alloys Compd. 742, 683–689 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    W. Li, D. Zhou, and L. Pang: Structure and energy storage properties of Mn‐doped (Ba,Sr)TiO3‐MgO composite ceramics. J. Mater. Sci.: Mater. Electron. 28, 8749–8754 (2017).

    CAS  Google Scholar 

  29. 29.

    P. Peng, H. Nie, Z. Liu, W. Ren, F. Cao, G. Wang, and X. Dong: Enhanced ferroelectric properties and thermal stability of Mn‐doped 0.96(Bi‐0.5 Na‐0.5)TiO3‐0.04BiAlO(3) ceramics. J. Am. Ceram. Soc. 100, 1030–1036 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    C. Wang, X. Lou, T. Xia, and S. Tian: The dielectric, strain and energy storage density of BNT‐BKHxTi1‐x piezoelectric ceramics. Ceram. Int. 43, 9253–9258 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    J. Shi, H. Fan, X. Liu, and A.J. Bell: Large electrostrictive strain in Bi0.5Na0.5 TiO3‐BaTiO3‐Sr0.7Bi0.2TiO3 solid solutions. J. Am. Ceram. Soc. 97, 848–853 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    D. Lin, K.W. Kwok, and H.L.W. Chan: Structure and electrical properties of Bi0.5Na0.5TiO3‐BaTiO3‐Bi0.5Li0.5TiO3 lead‐free piezoelectric ceramics. Solid State Ionics 178, 1930–1937 (2008).

    CAS  Google Scholar 

  33. 33.

    Y. Wang, Z. Shen, Y. Li, Z. Wang, W. Luo, and Y. Hong: Optimization of energy storage density and efficiency in BaxSr1‐xTiO3 (x < = 0.4) paraelectric ceramics. Ceram. Int. 41, 8252–8256 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    P. Sellappan, C. Tang, J. Shi, and J.E. Garay: An integrated approach to doped thin films with strain‐tunable magnetic anisotropy: Powder synthesis, target preparation and pulsed laser deposition of Bi:YIG. Mater. Res. Lett. 5, 41–47 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    M. Chandrasekhar, Sonia, and P. Kumar: Synthesis and characterizations of NaNbO3 modified BNT‐BT‐BKT ceramics for energy storage applications. Physica B 497, 59–66 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Z. Liu, H. Fan, S. Lei, X. Ren, and C. Long: Duplex structure in K0.5Na0.5NbO3‐SrZrO3 ceramics with temperature‐stable dielectric properties. J. Eur. Ceram. Soc. 37, 115–122 (2017).

    Article  CAS  Google Scholar 

  37. 37.

    M. Li, L. Li, J. Zang, and D.C. Sinclair: Donor‐doping and reduced leakage current in Nb‐doped Na0.5Bi0.5TiO3. Appl. Phys. Lett. 106, 102904 (2015).

    Article  CAS  Google Scholar 

  38. 38.

    M. Yao, Y. Pu, L. Zhang, and M. Chen: Enhanced energy storage properties of (1‐x)Bi0.5Na0.5TiO3‐xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. Mater. Lett. 174, 110–113 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Q. Li, J. Wang, Y. Ma, L. Ma, G. Dong, and H. Fan: Enhanced energy‐storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3‐0.06BaTiO3 modified by CaZrO3. J. Alloys Compd. 663, 701–707 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, and W.D. Fei: Large electrocaloric response and high energy‐storage properties over a broad temperature range in lead‐free NBT‐ST ceramics. J. Eur. Ceram. Soc. 36, 593–600 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Z. Liu, P. Ren, C. Long, X. Wang, Y. Wan, and G. Zhao: Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538–544 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Y. Pu, M. Yao, L. Zhang, and P. Jing: High energy storage density of 0.55Bi0.5Na0.5TiO3‐0.45Ba0.85Ca0.15Ti0.9‐xZr0.1SnxO3 ceramics. J. Alloys Compd. 687, 689–695 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    C. Long, Q. Chang, Y. Wu, W. He, Y. Li, and H. Fan: New layer‐structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5‐xTi4O15: Crystal structures, electrical properties and conduction behaviors. J. Mater. Chem. C 3, 8852–8864 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Z. Liu, H. Fan, and M. Li: High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core‐shell microstructures. J. Mater. Chem. C 3, 5851–5858 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    G. Liu, H. Fan, J. Shi, and Z. Liu: Large strain and relaxation behavior in CeO2 doped Bi0.487Na0.427K0.06Ba0.026TiO3 piezoceramics. Ceram. Int. 42, 3938–3946 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    M. Li and D.C. Sinclair: The extrinsic origins of high permittivity and its temperature and frequency dependence in Y0.5Ca0.5MnO3 and La1.5Sr0.5NiO4 ceramics. J. Appl. Phys. 111, 759 (2012).

    Google Scholar 

  47. 47.

    B. Hu, H. Fan, L. Ning, S. Gao, Z. Yao, and Q. Li: Enhanced energy‐storage performance and dielectric temperature stability of (1‐x)(0.65Bi0.5Na0.5TiO3‐0.35Bi0.1Sr0.85TiO3)‐xKNbO3 ceramics. Ceram. Int. 44, 10968–10974 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation (51672220), the 111 Program (B08040) of MOE, the National Defense Science Foundation (32102060303), the National Key Research and Development Program of China (No. 2018YFB1106600), the Xi'an Science and Technology Foundation (CXY1706‐5, 2017086CG‐RC049‐XBGY005), the Shaanxi Provincial Science Foundation (2017KW‐018), and the NPU Gaofeng Project (17GH020824) of China. We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for the help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huiqing Fan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Fan, H. Enhanced energy storage performance and fatigue resistance of Mn‐doped 0.7Na0.5Bi0.5TiO3– 0.3Sr0.7Bi0.2TiO3 lead‐free ferroelectric ceramics. Journal of Materials Research (2021). https://doi.org/10.1557/s43578-020-00082-5

Download citation

Keywords

  • perovskites
  • energy storage
  • ceramic
  • ferroelectric