Hot deformation and softening response in boronmodified two‐phase titanium aluminide Ti–48Al–2V–0.2B

Abstract

Hot deformation and softening response for the titanium aluminide Ti–48Al–2V–0.2B has been investigated. The deformation response to softening mechanisms has been examined. Deformation experiments were carried out in the strain rate range 0.01–10 s−1 keeping the temperature constant at 1200 °C and in the temperature range 1000–1200 °C at the strain rate 1 s−1. With an increase in strain rate, the microstructural changes associated with the softening mechanism include breaking of the lamellae, spheroidization of the broken laths and dynamic recrystallization. For the strain rate 1 s−1, deformation in the (α2 +γ) phase field leads to fine recrystallized grains, remnant lamellae and cavitation along the grain boundaries (for temperatures 1000 and 1100 °C). Deformation in the (α +γ) phase field leads to dynamic recrystallization at the shear bands, within the lamellae, breaking and rotation of the α phase during the continuous increase in the deformation strain.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

References

  1. 1.

    F. Appel, J.D.H. Paul, and M. Oehring: Gamma Titanium Aluminide Alloys. First (WILEY‐VCH Verlag GmbH & Co. KGaA, Germany, 1 (2011)). https://doi.org/10.1002/9783527636204.

  2. 2.

    Y.W. Kim: Ordered intermetallic alloys, part III: Gamma titanium aluminides. Jom 46, 30 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    L. Tretyachenko: Aluminium – titanium – vanadium. MSI Eureka in Springer Materials 11A4, 26–53 (2004). doi:10.1007/11008514_4.

    Article  Google Scholar 

  4. 4.

    A. Lasalmonie: Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics 14, 1123 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Jiang, Y.H. He, N.P. Xu, J. Zou, B.Y. Huang, and C.T. Liu: Effects of the Al content on pore structures of porous Ti–Al alloys. Intermetallics 16, 327 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    P. Erdely, R. Werner, E. Schwaighofer, H. Clemens, and S. Mayer: In‐situ study of the time – temperature‐transformation behaviour of a multi‐phase intermetallic stabilised TiAl alloy. Intermetallics 57, 17 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Y.W. Kim and D.M. Dimiduk: Progress in the understanding of gamma titanium aluminides. Jom 43, 40 (1991).

    CAS  Article  Google Scholar 

  8. 8.

    D. Hu: Effect of composition on grain refinement in TiAl‐based alloys. Intermetallics 9, 1037 (2001). ).

    CAS  Article  Google Scholar 

  9. 9.

    M. Oehring, A. Stark, J.D.H. Paul, T. Lippmann, and F. Pyczak: Microstructural refinement of boron containing β‐solidifying γ‐titanium aluminide alloys. Mater. Sci. Forum 706–709, 1089 (2012).

    Article  Google Scholar 

  10. 10.

    M. Oehring, A. Stark, J.D.H. Paul, T. Lippmann, and F. Pyczak: Microstructural refinement of boron‐containing β‐solidifying γ‐titanium aluminide alloys through heat treatments in the phase field. Intermetallics 32, 12 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    W.F. Cui, C.M. Liu, V. Bauer, and H.J. Christ: Thermomechanical fatigue behaviours of a third generation γ‐TiAl based alloy. Intermetallics 15, 675 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    S.L. Semiatin, B.W. Shanahan, and F. Meisenkothen: Hot rolling of gamma titanium aluminide foil. Acta Mater. 58, 4446 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    P. Erdely, P. Staron, E. Maawad, N. Schell, J. Klose, S. Mayer, and H. Clemens: Effect of hot rolling and primary annealing on the microstructure and texture of a β‐stabilised γ ‐TiAl based alloy. Acta Mater. 126, 145–153 (2017). https://doi.org/10.1016/j.actamat.2016.12.056

    CAS  Article  Google Scholar 

  14. 14.

    S.L. Semiatin and V. Seetharaman: Load‐signature analysis for pack rolling of near‐gamma titanium aluminide alloys. Metall. Mater. Trans. A 25, 2539 (1994).

    Article  Google Scholar 

  15. 15.

    D.S. Xu, H. Wang, R. Yang, and P. Veyssière: Point defect formation by dislocation reactions in TiAl. IOP Conf. Ser. Mater. Sci. Eng. 3, 012024 (2009).

    Article  Google Scholar 

  16. 16.

    S. H. Whang, and Y. D. Hahn. High temperature ordered intermetallic Alloys III, Materials Research Society Symposium Proceedings, Vol 133, edited by C.T. Liu, A.I. Taub, M.S. Stoloff and C.C Koch (Pittsburgh, Pennsylvania: Materials Research Society), P‐ 687, 1989.

  17. 17.

    E. L. Hall, and S. C. Huang. High Temperature Ordered Intermetallic Alloys III, Materials Research Society Symposium Proceedings, Vol 133, edited by C.T. Liu, A.I. Taub, M.S. Stoloff and C.C Koch (Pittsburgh, Pennsylvania: Materials Research Society), P‐693, 1989.

  18. 18.

    K. Chaudhuri and S. Das: Deformation microstructures of Ti‐52at%Al‐3at%V alloy. Philos. Mag. Letts 67, 143 (1993).

    CAS  Article  Google Scholar 

  19. 19.

    V. Seetharaman and S.L. Semiatin: Influence of temperature transients on the hot workability of a two‐phase gamma titanium aluminide alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 27A, 1987 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    D. Hu: Effect of boron addition on tensile ductility in lamellar TiAl alloys. Intermetallics 10, 851 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    S. Roy, V. Tungala, and S. Suwas: Effect of hypoeutectic boron addition on the beta transus of Ti‐6Al‐4V alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42, 2535 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger: Grain refinement by low boron additions in niobium‐rich TiAl‐based alloys. Intermetallics 16, 969 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    M. Sujata, D.H. Sastry, and C. Ramachandra: Microstructural characterization and creep behaviour of as‐cast titanium aluminide Ti–48Al–2 V. Intermetallics 12, 691–697 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    A.V. Kartavykh, M.V. Gorshenkov, and D.A. Podgorny: Grain refinement mechanism in advanced??‐TiAl boron‐alloyed structural intermetallics: The direct observation. Mater. Lett. 142, 294 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan, and D.B. Miracle: Processing response of boron modified Ti‐6A1‐4 V alloy in (alpha + beta) working regime. TMS 2009 138th Annual Meeting and Exhibition, February 15–19, 3, 63 (2009).

  26. 26.

    W. Lefebvre, A. Menand, A. Loiseau, and D. Blavette : Atom probe study of phase transformations in a Ti–48 at.% Al alloy. Mater. Sci. Eng. A A327, 40–46 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    S. Zghal, S. Naka, and A. Couret: Quantitative TEM analysis of the lamellar microstructure in TiAl based alloys. Acta Mater. 45, 3005 (1997).

    CAS  Article  Google Scholar 

  28. 28.

    H. Liu, R. Rong, F. Gao, Y. Liu, Z. Li, and Q. Wang: Hot deformation mechanisms of an as‐extruded TiAl alloy with large amount of remnant lamellae. J. Mater. Eng. Perform. 26, 3151 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    N. Bibhanshu and S. Suwas: Hot deformation and dynamic recrystallization in titanium aluminide. Mater. Sci. Forum 941, 1391 (2018).

    Article  Google Scholar 

  30. 30.

    N. Bibhanshu and S. Suwas: Mechanism of shear band formation and dynamic softening in a two‐phase (α2 + γ) titanium aluminide. J. Mater. Res. 35(13), 1635–1646 (2020). https://doi.org/10.1557/jmr.2020.99.

    CAS  Article  Google Scholar 

  31. 31.

    N. Bibhanshu, A. Bhattacharjee, and S. Suwas: Hot deformation response of titanium aluminides Ti–45Al‐(5, 10)Nb‐0.2B‐0.2C with pre‐conditioned microstructures. J. Alloys Compd., 832, 154584 (2020). https://doi.org/10.1016/j.jallcom.2020.154584.

    CAS  Article  Google Scholar 

  32. 32.

    A. Dey and A. Mukhopadhyay: Nanoindentation of brittle solids (2014).

  33. 33.

    A. Tazuddin, K. Biswas, and N.P. Gurao: Deciphering micro‐mechanisms of plastic deformation in a novel single phase fcc‐based MnFeCoNiCu high entropy alloy using crystallographic texture. Mater. Sci. Eng. A 657, 224 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    M.J. Lai, C.C. Tasan, and D. Raabe: On the mechanism of {332} twinning in metastable β titanium alloys. Acta Mater. 111, 173 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, and M.A. Tikhonovsky: High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 636, 188 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    S. Roy and S. Suwas: Enhanced superplasticity for (α + β)‐hot rolled Ti‐6Al‐4V‐0.1B alloy by means of dynamic globularization. Mater. Des. 58, 52 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    P.D. Nicolaou, and S.L. Semiatin: The knoop‐hardness yield locus of an orthorhombic titanium aluminide alloy. Metall. Mater. Trans. A 29, 1763 (1998).

    Article  Google Scholar 

  38. 38.

    S.L. Semiatin, V. Seetharaman, D.M. Dimiduk, and K.H.G. Ashbee: Phase transformation behavior of gamma titanium aluminide alloys during supertransus heat treatment. Metall. Mater. Trans. A 92, 7 (1998).

    Article  Google Scholar 

  39. 39.

    J.C. Schuster and M. Palm: Reassessment of the binary aluminum‐titanium phase diagram. J. Phase Equilibria Diffus. 27, 255 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    V. Seetharaman and S.L. Semiatin: Plastic‐flow and microstructure evolution during hot deformation of a gamma titanium aluminide alloy. Metall. Mater. Trans. A 28, 2309 (1997).

    Article  Google Scholar 

  41. 41.

    L. Cheng, J. Li, B. Tang, H. Kou, and E. Bouzy: Superplastic deformation mechanisms of high Nb containing TiAl alloy with (α2 + γ) microstructure. Intermetallics 75, 62–71 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the IIT Madras for providing the Gleeble facility and AFMM department of IISc Bangalore for characterization facility. Special Thanks to Mr. Rangan K of IIT Madras for their assistance to carry out a successful deformations test on the Gleeble.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nitish Bibhanshu or Satyam Suwas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bibhanshu, N., Shankar, G. & Suwas, S. Hot deformation and softening response in boronmodified two‐phase titanium aluminide Ti–48Al–2V–0.2B. Journal of Materials Research (2021). https://doi.org/10.1557/s43578-020-00079-0

Download citation

Keywords

  • microstructure
  • scanning electron microscopy (SEM)
  • thermogravimetric analysis (TGA)