Effects of defect on thermal stability and photoluminescence in quenched Ho‐doped 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 lead‐free ceramics

Abstract

Solid solution 0.94Na0.5Bi0.5TiO3–6BaTiO3 (NBT–6BT) is considered to be one kind of lead‐free piezoelectric materials with excellent electrical properties due to the existence of morphotropic phase boundary (MPB). However, its relatively lower depolarization temperature is a long‐standing bottleneck for the application of NBT‐based piezoelectric ceramics. In this work, the influence of thermal quenching on depolarization temperature and electrical properties of rare‐earth Ho‐doped NBT–6BT lead‐free ceramics was investigated. It was shown that the relative high piezoelectric performance, as well as an improvement of depolarization temperature (Td), can be realized by thermal quenching. The results showed that the quenching process induced high concentration of oxygen vacancy, giving rise to the change of octahedra mode and enhanced lattice distortion, which is benefit to the temperature stability of piezoelectric and ferroelectric properties. Furthermore, up‐conversion photoluminescence (PL) of Ho‐doped NBT–6BT could be effectively tuned by the introduction of oxygen vacancy, suggesting a promising potential in optical–electrical multifunctional devices.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

References

  1. 1.

    G. Catalan and J.F. Scott: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Y.H. Chu, L.W. Martin, M.B. Holcomb, and R. Ramesh: Controlling magnetism with multiferroics. Mater. Today 10, 16 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    X.W. Dong, K.F. Wang, S.J. Luo, J.G. Wan, and J.M. Liu: Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7. J. Appl. Phys. 106, 321 (2009).

    Google Scholar 

  4. 4.

    M. Fiebig: TOPICAL REVIEW: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura: Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Wang, X. Wen, Y. Jia, M. Huang, and Y. Wang: Piezo‐catalysis for nondestructive tooth whitening. Nat. Commun. 11, 1328 (2020).

    CAS  Article  Google Scholar 

  7. 7.

    D. Maurya, A. Pramanick, M. Feygenson, J.C. Neuefeind, and S. Priya: Effect of poling on nanodomains and nanoscale structure in A‐site disordered lead‐free piezoelectric Na0.5Bi0.5TiO3‐BaTiO3. J. Mater. Chem. C 2, 8423 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Wang, C. Luo, S. Wang, C. Chen, G. Yuan, H. Luo, and D. Viehland: Large piezoelectricity in ternary lead‐free single crystals. Adv. Electron. Mater. 6, 1900949 (2020).

    CAS  Article  Google Scholar 

  9. 9.

    I. Levin and I.M. Reaney: Nano‐ and mesoscale structure of Na1/2Bi1/2TiO3: A TEM perspective. Adv. Funct. Mater. 22, 3445 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, and D.C. Sinclair: A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Hiruma, H. Nagata, and T. Takenaka: Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112 (2009).

    Article  CAS  Google Scholar 

  12. 12.

    L. Jiang, Z. Wang, Y. Chen, P. Chen, L. Luo, and H. Chen: Bright up‐conversion emission of Er3+‐doped lead‐free ferroelectric Na0.5Bi0.5TiO3 single crystal. Mater. Lett. 210, 158 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    S. Wang, H. Zhou, X. Wang, and A. Pan: Up‐conversion luminescence and optical temperature‐sensing properties of Er3+‐doped perovskite Na0.5Bi0.5TiO3 nanocrystals. J. Phys. Chem. Solids 98, 28 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, and J. Roedel: Two‐stage processes of electrically induced‐ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3‐0.06BaTiO3. Appl. Phys. Lett. 102, 192903 (2013).

    Article  CAS  Google Scholar 

  15. 15.

    T. Takenaka, K.I. Maruyama, and K. Sakata: (Bi1/2Na1/2)TiO3‐BaTiO3 system for lead‐free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991).

    CAS  Article  Google Scholar 

  16. 16.

    X. Zhang, G. Jiang, F. Guo, D. Liu, and W. Cao: Mn doping effects on electric properties of 0.93(Bi0.5Na0.5)TiO3‐0.07Ba(Ti0.945Zr0.055)O3 ceramics. J. Am. Ceram. Soc. 101, 2996 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    R. Zuo, C. Ye, X. Fang, and J. Li: Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 871 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    H.D. Li, C.D. Feng, and W.L. Yao: Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3–BaTiO3 morphotropic‐phase‐boundary composition. Mater. Lett. 58, 1194 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    L. Li, M. Zhu, K. Zhou, Q. Wei, M. Zheng, and Y. Hou: Delayed thermal depolarization of Bi0.5Na0.5TiO3‐BaTiO3 by doping acceptor Zn2+ with large ionic polarizability. J. Appl. Phys. 122, 204104 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    S. Prasertpalichat, W. Schmidt, and D.P. Cann: Effects of A‐site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Adv. Dielectrics 06, 1650012 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    I.T. Seo, S. Steiner, and T. Frömling: The effect of A site non‐stoichiometry on 0.94(NayBix)TiO3‐0.06BaTiO3. J. Eur. Ceram. Soc. 37, 1429 (2016).

    Article  CAS  Google Scholar 

  22. 22.

    J. Zhang, Z. Pan, F.F. Guo, W.C. Liu, H. Ning, Y.B. Chen, M.H. Lu, B. Yang, J. Chen, and S.T. Zhang: Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3‐based lead‐free piezoceramics. Nat. Commun. 6, 6615 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    J. Zang, W. Jo, and J. Rodel: Quenching‐induced circumvention of integrated aging effect of relaxor lead lanthanum zirconate titanate and (Bi1/2Na1/2)TiO3‐BaTiO3. Appl. Phys. Lett. 102, 241 (2013).

    Article  CAS  Google Scholar 

  24. 24.

    H. Muramatsu, H. Nagata, and T. Takenaka: Quenching effects for piezoelectric properties on lead‐free (Bi1/2Na1/2)TiO3 ceramics. Jpn. J. Appl. Phys. 55, 10TB07 (2016).

    Article  CAS  Google Scholar 

  25. 25.

    T. Miura, H. Nagata, and T. Takenaka: Quenching effects on piezoelectric properties and depolarization temperatures of (Bi0.5Na0.5)TiO3‐based solid solution systems. Jpn. J. Appl. Phys. 56, 10PD05 (2017).

    Article  Google Scholar 

  26. 26.

    J. Zhang, R.X. Wang, L. Li, J.Y. Wu, Y.S. Cui, Z.B. Gu, H. Zhang, M.W. Zhu, S.T. Zhang, and B. Yang: Highly enhanced thermal stability in quenched Na0.5Bi0.5TiO3‐based lead‐free piezoceramics. J. Eur. Ceram. Soc. 39, 4705 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Z.T. Li, H. Liu, H. Cheng, T.Z. Xu, M.H. Zhang, J. Yin, J.F. Li, K. Wang, and J. Chen: Enhanced temperature stability and defect mechanism of BNT‐based lead‐free piezoceramics investigated by a quenching process. Adv. Electron. Mater. 5, 1800756 (2019).

    Article  CAS  Google Scholar 

  28. 28.

    P.Y. Chen, C.S. Chen, C.S. Tu, and T.L. Chang: Large E‐field induced strain and polar evolution in lead‐free Zr‐doped 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics. J. Eur. Ceram. Soc. 34, 4223 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    G. Arlt and H. Neumann: Internal bias in ferroelectric ceramics: Origin and time dependence. Ferroelectrics 87, 109 (1988).

    CAS  Article  Google Scholar 

  30. 30.

    H.B. Kang, J. Chang, K. Koh, L. Lin, and Y.S. Cho: High quality Mn‐doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl. Mater. Interfaces. 6, 10576 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, and P. Liu: Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J. Eur. Ceram. Soc. 36, 3995 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    S. Steiner, I.T. Seo, P. Ren, M. Li, D.J. Keeble, and T. Frömling: The effect of Fe‐acceptor doping on the electrical properties of Na1/2Bi1/2TiO3 and 0.94(Na1/2Bi1/2)TiO3‐0.06 BaTiO3. J. Am. Ceram. Soc. 102, 5295 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    Z. Peng, Q. Chen, D. Liu, Y. Wang, D. Xiao, and J. Zhu: Evolution of microstructure and dielectric properties of (LiCe)‐doped Na0.5Bi2.5Nb2O9 Aurivillius type ceramics. Curr. Appl. Phys. 13, 1183 (2013).

    Article  Google Scholar 

  34. 34.

    K.V. Lalitha, J. Koruza, and J. Roedel: Propensity for spontaneous relaxor‐ferroelectric transition in quenched (Na1/2Bi1/2)TiO3‐BaTiO3 compositions. Appl. Phys. Lett. 113, 252902 (2018).

    Article  CAS  Google Scholar 

  35. 35.

    S. Steinsvik, R. Bugge, J. Gjnnes, J. Taft, and T. Norby: The defect structure of SrTi1−xFexO3−y (x = 0 0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS). J. Phys. Chem. Solids 58, 969 (1997).

    CAS  Article  Google Scholar 

  36. 36.

    C. Chen, H. Zhang, H. Deng, and T. Huang: Electric field and temperature‐induced phase transition in Mn‐doped Na1/2Bi1/2TiO3‐5.0 at.%BaTiO3 single crystals investigated by micro‐Raman scattering. Appl. Phys. Lett. 104, 2236 (2014).

    Google Scholar 

  37. 37.

    W.V. Eerd, D. Damjanovic, N. Klein, N. Setter, and J. Trodahl: Structural complexity of Na0.5Bi0.5TiO3‐BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82, 104111 (2010).

    Article  CAS  Google Scholar 

  38. 38.

    J. Kreisel, A.M. Glazer, P. Bouvier, and G. Lucazeau: High‐pressure Raman study of a relaxor ferroelectric: The Na0.5Bi0.5TiO3 perovskite. Phys. Rev. B 63, 174106 (2001).

    Article  CAS  Google Scholar 

  39. 39.

    K. Zou, G. Dong, J. Liu, B. Xu, and D. Wang: Effects of calcination temperature and Li+ ions doping on structure and upconversion luminescence properties of TiO2:Ho3+‐Yb3+ nanocrystals. Mater. Sci. Technol. 35, 483 (2019).

    Article  Google Scholar 

  40. 40.

    J. Lin, Q. Lu, J. Xu, X. Wu, C Lin, T Lin, C Chen, and L Luo: Outstanding optical temperature sensitivity and dual‐mode temperature‐dependent photoluminescence in Ho3+‐doped (K, Na)NbO3‐SrTiO3 transparent ceramics. J. Am. Ceram. Soc. 102, 4710 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    X. Wu, J. Lin, P. Chen, C. Liu, and X. Zheng: Ho3+ doped (K, Na)NbO3‐based multifunctional transparent ceramics with superior optical temperature sensing performance. J. Am. Ceram. Soc. 102, 1249 (2018).

    Article  CAS  Google Scholar 

  42. 42.

    T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, and S.W. Cheong: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63 (2009).

    CAS  Article  Google Scholar 

  43. 43.

    Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An: Tunable luminescence contrast of Na0.5Bi4.5Ti4O15:Re (Re = Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers. ACS Appl. Mater. Interfaces 8, 34581 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China under Grant Nos. 51862016, 52062018 and 51762024, the Natural Science Foundation of Jiangxi Province under Grant Nos. 20192BAB206008 and 20192BAB212002, and the Foundation of Jiangxi Provincial Education Department under Grant No. GJJ190712. The author (Chao Chen) wishes to acknowledge the support from the Jiangxi Voyage Project. The author also thanks Dr. W. F. Bai for performing the ferroelectric measurements.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chao Chen or Xiang‐Ping Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Chen, C., Jiang, X. et al. Effects of defect on thermal stability and photoluminescence in quenched Ho‐doped 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 lead‐free ceramics. Journal of Materials Research (2021). https://doi.org/10.1557/s43578-020-00076-3

Download citation

Keywords

  • lead‐free
  • depolarization temperature
  • quenching
  • oxygen vacancy
  • photoluminescence