Exploring argon plasma effect on ferroelectric Hf0.5Zr0.5O2 thin film atomic layer deposition

Abstract

The doped/alloyed HfO2 and ZrO2 thin films revolutionized not only the field of ferroelectric physics but also various ranges of device applications. Especially when the two oxides are combined in an 1:1 ratio, the ferroelectric polarization of the material became the most distinctive. Many researchers have investigated various different process conditions such as controlling Hf0.5Zr0.5O2 (HZO) film thickness and modifying different metal electrodes. Here, we explored the effect of additional Ar plasma treatment to the HZO film. The additional Ar plasma was exposed to the plasma-enhanced atomic layer deposition (PEALD) HZO for this study. Then, the sample was compared with a conventional PEALD and thermal ALD HZO films. By understanding the polarization–electric field (P–E), current–electric field (I–E), and electrical breakdown characteristics of the different samples, it was found that the Ar plasma treatment can control the degree of ferroelectric and antiferroelectric phases of HZO film.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

References

  1. 1.

    T.D. Huan: Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, 064111-1–064111-5 (2014).

    Article  Google Scholar 

  2. 2.

    R. Batra, T.D. Huan, G.A. Rossetti, and R. Ramprasad: Dopants promoting ferroelectricity in hafnia: Insights from a comprehensive chemical space exploration. Chem. Mater. 29, 9102 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    P.D. Lomenzo, Q. Takmeel, C. Zhou, C.M. Fancher, E. Lambers, N.G. Rudawski, J.L. Jones, S. Moghaddam, and T. Nishida: TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J. Appl. Phys. 117, 134105 (2015).

    Article  Google Scholar 

  4. 4.

    M. Pešić and L. Larcher: Root Causes for Ferroelectricity in Doped HfO2 .In Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, U. Schroeder, C.S. Hwang and H. Funakubo, eds. (Woodhead Publishing, Cambridge, 2019), pp. 399–411.

  5. 5.

    T. Shiraishi, K. Katayama, T. Yokouchi, T. Shimizu, T. Oikawa, O. Sakata, H. Uchida, Y. Imai, T. Kiguchi, T.J. Konno, and H. Funakubo: Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Appl. Phys. Lett. 108, 262904 (2016).

    Article  Google Scholar 

  6. 6.

    S.S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M.R. McCarter, C.R. Serrao, A.K. Yadav, G. Karbasian, C.-H. Hsu, A.J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R.V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, and S. Salahuddin: Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478 (2020).

    CAS  Article  Google Scholar 

  7. 7.

    J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder, and T. Mikolajick: Ferroelectricity in HfO2 enablesnonvolatile data storage in 28 nm HKMG.2012 Symposium on VLSI Technology (VLSIT).25–26 (2012).

  8. 8.

    T. Francois, L. Grenouillet, J. Coignus, P. Blaise, C. Carabasse, N. Vaxelaire, T. Magis, F. Aussenac, V. Loup, C. Pellissier, S. Slesazeck, V. Havel, C. Richter, A. Makosiej, B. Giraud, E.T. Breyer, M. Materano, P. Chiquet, M. Bocquet, E. Nowak, U. Schroeder, and F. Gaillard: Demonstration of BEOL-compatible ferroelectric Hf0.5Zr0.5O2 scaledFeRAM co-integrated with 130nm CMOS for embedded NVM applications.2019 IEEE International Electron DevicesMeeting (IEDM).15.7.1–15.7.4 (2019).

  9. 9.

    M. Seo, M.-H. Kang, S.-B. Jeon, H. Bae, J. Hur, B.C. Jang, S. Yun, S. Cho, W.-K. Kim, M.-S. Kim, K.-M. Hwang, S. Hong, S.-Y. Choi, and Y.-K. Choi: First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electron Device Lett. 39, 1445 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    B. Max, M. Hoffmann, S. Slesazeck, and T. Mikolajick: Direct correlation of ferroelectric properties and memory characteristics in ferroelectric tunnel junctions. IEEE J. Electron Devices Soc. 7, 1175 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang: Evolution of phases and ferroelectric properties of thin Hf 0.5 Zr 0.5 O 2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).

    Article  Google Scholar 

  12. 12.

    M.H. Park, H.J. Kim, Y.J. Kim, W. Jeon, T. Moon, and C.S. Hwang: Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on TiN bottom and TiN or RuO2 top electrodes. Phys. Status Solidi RRL 8, 532 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Y.-H. Chen, C.-Y. Chen, C.-L. Cho, C.-H. Hsieh, Y.-C. Wu, K.-S. Chang-Liao, and Y.-H. Wu: Enhanced sub 20-nm FinFET performance by stacked gate dielectric with lessoxygen vacancies featuring higher current drive capability and superiorreliability.2015 IEEE InternationalElectron Devices Meeting (IEDM), 21.3.1–21.3.4 (2015).

  14. 14.

    G. Walters, A. Shekhawat, S. Moghaddam, J.L. Jones, and T. Nishida: Effect of in situ hydrogen plasma on the ferroelectricity of hafnium zirconium oxide films. Appl. Phys. Lett. 116, 032901 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    K. Chen, P. Chen, R. Kao, Y. Lin, and Y. Wu: Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors. IEEE Electron Device Lett. 39, 87 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    H.-Y. Shih, W.-H. Lee, W.-C. Kao, Y.-C. Chuang, R.-M. Lin, H.-C. Lin, M. Shiojiri, and M.-J. Chen: Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing. Sci. Rep. 7, 39717 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    J. Hur, N. Tasneem, G. Choe, P. Wang, Z. Wang, A.I. Khan, and S. Yu: Direct comparison of ferroelectric properties in Hf0.5Zr0.5O2 between thermal and plasma-enhanced atomic layer deposition. Nanotechnology (2020). doi:10.1088/1361-6528/aba5b7.

    Article  Google Scholar 

  18. 18.

    E. Yurchuk, S. Mueller, D. Martin, S. Slesazeck, U. Schroeder, T. Mikolajick, J. Müller, J. Paul, R. Hoffmann, J. Sundqvist, T. Schlösser, R. Boschke, R. van Bentum, and M. Trentzsch: Origin of the endurance degradation in the novel HfO2-based1T ferroelectric non-volatile memories. 2014 IEEE International Reliability Physics Symposium (IRPS).2E.5.1–2E.5.5.

  19. 19.

    M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, and U. Schroeder: Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv. Funct. Mater. 26, 7486 (2016).

    Article  Google Scholar 

  20. 20.

    K. Florent, A. Subirats, S. Lavizzari, R. Degraeve, U. Celano, B. Kaczer, L. Di Piazza, M. Popovici, G. Groeseneken, and J. Van Houdt: Investigation of the enduranceof FE-HfO2 devices by means of TDDB studies.2015 IEEE InternationalReliability Physics Symposium (IRPS).6D.3-1–6D.3.-7 (2018).

  21. 21.

    P.O. Oviroh, R. Akbarzadeh, D. Pan, R.A.M. Coetzee, and T.-C. Jen: New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mater. 20, 465 (2019).

    Article  Google Scholar 

  22. 22.

    V. Pore, T. Hatanpää, M. Ritala, and M. Leskelä: Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium. J. Am. Chem. Soc. 131, 3478 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    S.-C. Ha, E. Choi, S.-H. Kim, and J. Sung Roh: Influence of oxidant source on the property of atomic layer deposited Al2O3 on hydrogen-terminated Si substrate. Thin Solid Films 476, 252 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by ASCENT, one of the SRC/DARPA JUMP Centers. This work was performed with Hang Chen at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the NSF-ECCS-1542174.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Asif Islam Khan or Shimeng Yu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hur, J., Wang, P., Tasneem, N. et al. Exploring argon plasma effect on ferroelectric Hf0.5Zr0.5O2 thin film atomic layer deposition. Journal of Materials Research (2021). https://doi.org/10.1557/s43578-020-00074-5

Download citation

Keywords

  • atomic layer deposition
  • ferroelectric
  • phase transformation