Avoiding dendrite formation by confining lithium deposition underneath Li–Sn coatings


The use of interfacial layers to stabilize the lithium surface is a popular research direction for improving the morphology of deposited lithium and suppressing lithium dendrite formation. This work considers a different approach to controlling dendrite formation where lithium is plated underneath an interfacial coating. In the present research, a Li–Sn intermetallic was chosen as a model system due to its lithium-rich intermetallic phases and high Li diffusivity. These coatings also exhibit a significantly higher Li exchange current than bare Li thus leading to better charge transfer kinetics. The exchange current is instrumental in determining whether lithium deposition occurs above or below the Li–Sn coating. High-resolution transmission electron microscopy and cryogenic focused ion beam scanning electron microscopy were used to identify the features associated with Li deposition. Atomic scale simulations provide insight as to the adsorption energies determining the deposition of lithium below the Li–Sn coating.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1.

    C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J.Z. Lee, M.H. Lee, J. Alvarado, M.A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y.S. Meng, Quantifying inactive lithium in lithium metal batteries. Nature 572(7770), 511 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    C. Fang, X. Wang, and Y. S. Meng: Key Issues hindering a practical lithium-metal anode. Trends Chem. 0(0), 1 (2019).

  3. 3.

    X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126(12), 2047 (1979)

    CAS  Article  Google Scholar 

  5. 5.

    J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, and J. G. Zhang: High rate and stable cycling of lithium metal anode. Nat. Commun. 6 (2015).

  6. 6.

    J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587 (2010)

    CAS  Article  Google Scholar 

  7. 7.

    M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192(4244), 1126 (1976)

    CAS  Article  Google Scholar 

  8. 8.

    B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1 (2018)

    Article  CAS  Google Scholar 

  9. 9.

    D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89(2), 206 (2000)

    CAS  Article  Google Scholar 

  10. 10.

    X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang, Q. Zhang, A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3(3), 1 (2015)

    Google Scholar 

  11. 11.

    M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1(9), 1 (2016)

    Article  CAS  Google Scholar 

  12. 12.

    X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform li deposits in lithium metal batteries. Adv. Funct. Mater. 27(10), 1 (2017)

    Google Scholar 

  13. 13.

    D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47(9), 1423 (2002)

    CAS  Article  Google Scholar 

  14. 14.

    C. P. Yang, Y. X. Yin, S. F. Zhang, N. W. Li, and Y. G. Guo: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6(5) (2015).

  15. 15.

    Q. Yun, Y.B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q.H. Yang, Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28(32), 6932 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    K. Liu, D. Zhuo, H.W. Lee, W. Liu, D. Lin, Y. Lu, Y. Cui, Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv. Mater. 29(4), 1 (2017)

    Article  CAS  Google Scholar 

  17. 17.

    G. Zheng, S.W. Lee, Z. Liang, H.W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9(8), 618 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S.Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y.W. Mai, J.B. Goodenough, J. Li, Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578(7794), 251 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    G.A. Umeda, E. Menke, M. Richard, K.L. Stamm, F. Wudl, B. Dunn, Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21(5), 1593 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    D. Lin, Y. Liu, W. Chen, G. Zhou, K. Liu, B. Dunn, Y. Cui, Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17(6), 3731 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X. Sun, L.F. Nazar, A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 6, 17119 (2017)

    Article  CAS  Google Scholar 

  22. 22.

    Q. Yan, G. Whang, Z. Wei, S. T. Ko, P. Sautet, S. H. Tolbert, B. S. Dunn, and J. Luo: Appl. Phys. Lett. 117, (2020).

  23. 23.

    F. Guo, C. Wu, H. Chen, F. Zhong, X. Ai, H. Yang, J. Qian, Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode. Energy Storage Mater. 24(4), 635 (2020)

    Article  Google Scholar 

  24. 24.

    L. Luo, A. Manthiram, An artificial protective coating toward dendrite-free lithium-metal anodes for lithium-sulfur batteries. Energy Technol. 8(7), 1 (2020)

    CAS  Article  Google Scholar 

  25. 25.

    R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu, Q. Qiao, Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11(1), 1 (2020)

    Article  CAS  Google Scholar 

  26. 26.

    A. Anani, R.A. Huggins, Technical notes kinetic and thermodynamic parameters of several binary lithium. J. Electrochem. Soc. 134(12), 3098 (1987)

    CAS  Article  Google Scholar 

  27. 27.

    J. Wen, R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-tin system. J. Solid State Chem. 35(3), 376 (1980)

    CAS  Article  Google Scholar 

  28. 28.

    M. Wan, S. Kang, L. Wang, H.W. Lee, G.W. Zheng, Y. Cui, Y. Sun, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 11(1), 1 (2020)

    Article  CAS  Google Scholar 

  29. 29.

    H. Xu, S. Li, C. Zhang, X. Chen, W. Liu, Y. Zheng, Y. Xie, Y. Huang, J. Li, Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci. 12(10), 2991 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    Z. Tu, S. Choudhury, M.J. Zachman, S. Wei, K. Zhang, L.F. Kourkoutis, L.A. Archer, Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nat. Energy 3(4), 310 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    Z. Du, Z. Jiang, C. Guo, Thermodynamic optimizing of the Li-Sn system. Int. J. Mater. Res. 97(1), 10 (2006)

    CAS  Google Scholar 

  32. 32.

    L. Lin, F. Liang, K. Zhang, H. Mao, J. Yang, Y. Qian, Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. J. Mater. Chem. A 6(32), 15859 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    K. Liao, S. Wu, X. Mu, Q. Lu, M. Han, P. He, Z. Shao, H. Zhou, Developing a “Water-Defendable” and “Dendrite-Free” lithium-metal anode using a simple and promising GeCl4 pretreatment method. Adv. Mater. 30(36), 1 (2018)

    Article  CAS  Google Scholar 

  34. 34.

    J.F. Moulder, W.F. Stickle, P.E. Sobol, Handbook of X-Ray Photoelectron Spectroscopy : A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics Inc, Eden Prairie, 1995).

    Google Scholar 

  35. 35.

    Y. Ozhabes, D. Gunceler, and T. A. Arias: Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. 1 (2015) arXiv:1504.05799.

  36. 36.

    H. Rawson, Inorganic Glass-Forming Systems (Academic Press, London, 1967).

    Google Scholar 

  37. 37.

    G. Rack: The binary system SnCl2-LiCl. Centr. Min. Geol. 3268 (1914).

  38. 38.

    Phase Equilibria Diagrams Online Database (NIST Standard Reference Database 31). Am. Ceram. Soc. Natl. Inst. Stand. Technol. Figure Number 3090 (2020).

  39. 39.

    M. Shojiya, M. Takahashi, R. Kanno, Y. Kawamoto, K. Kadono, Optical transitions of Er3+ ions in ZnCl2-based glass. J. Appl. Phys. 82(12), 6259 (1997)

    CAS  Article  Google Scholar 

  40. 40.

    K. Annapurna, R.N. Dwivedi, P. Kundu, S. Buddhudu, Fluorescence properties of Sm3+: ZnCl2-BaCl2-LiCl glass. Mater. Res. Bull. 38(3), 429 (2003)

    CAS  Article  Google Scholar 

  41. 41.

    J. Easteal, E.J. Sare, C.T. Moynihan, C.A. Angell, Glass-transition temperature, electrical conductance, viscosity, molar volume, refractive index, and proton magnetic resonance study of chlorozinc complexation in the system ZnCl2+LiCl+H2O. J. Solution Chem. 3(11), 807 (1974)

    CAS  Article  Google Scholar 

  42. 42.

    J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamental and Applications, 2nd Editio (Wiley, New York, 2001).

    Google Scholar 

  43. 43.

    T. Boyle, X. Kong, A. Pei, P.E. Rudnicki, F. Shi, W. Huang, Z. Bao, J. Qin, Y. Cui, Transient voltammetry with ultramicroelectrodes reveals the electron transfer kinetics of lithium metal anodes. ACS Energy Lett. 5(3), 701 (2020)

    CAS  Article  Google Scholar 

  44. 44.

    G. Bieker, M. Winter, P. Bieker, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17(14), 8670 (2015)

    CAS  Article  Google Scholar 

  45. 45.

    S. Kang, Y.-S. Lee, D.-W. Kim, Improved cycling stability of lithium electrodes in rechargeable lithium batteries. J. Electrochem. Soc. 161(1), A53 (2014)

    CAS  Article  Google Scholar 

  46. 46.

    A. Wei, H. Fei, Y. An, Y. Tao, J. Feng, Y. Qian, Uniform Li deposition by regulating the initial nucleation barrier: via a simple liquid-metal coating for a dendrite-free Li-metal anode. J. Mater. Chem. A 7(32), 18861 (2019)

    CAS  Article  Google Scholar 

  47. 47.

    K. Park, J.B. Goodenough, Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv. Energy Mater. 7(19), 1 (2017)

    Google Scholar 

  48. 48.

    H. Jung, B. Lee, M. Lengyel, R. Axelbaum, J. Yoo, Y.S. Kim, Y.S. Jun, Nanoscale: In situ detection of nucleation and growth of Li electrodeposition at various current densities. J. Mater. Chem. A 6(11), 4629 (2018)

    CAS  Article  Google Scholar 

  49. 49.

    F. Sagane, K.I. Ikeda, K. Okita, H. Sano, H. Sakaebe, Y. Iriyama, Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J. Power Sources 233, 34 (2013)

    CAS  Article  Google Scholar 

  50. 50.

    I. Popov, S. S. Djokić, and B. N. Grgur: in Fundam. Asp. Electrometall. (Springer US, Boston, MA, 2002), pp. 29–100.

  51. 51.

    J.Z. Lee, T.A. Wynn, M.A. Schroeder, J. Alvarado, X. Wang, K. Xu, Y.S. Meng, Cryogenic focused ion beam characterization of lithium metal anodes. ACS Energy Lett. 4(2), 489 (2019)

    CAS  Article  Google Scholar 

  52. 52.

    A.R. Ely, R.E. García, Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 160(4), A662 (2013)

    CAS  Article  Google Scholar 

  53. 53.

    Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13(10), 961 (2014)

    CAS  Article  Google Scholar 

  54. 54.

    Q. Pang, X. Liang, I.R. Kochetkov, P. Hartmann, L.F. Nazar, Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chemie - Int. Ed. 57(31), 9795 (2018)

    CAS  Article  Google Scholar 

  55. 55.

    C. Kozen, C.F. Lin, A.J. Pearse, M.A. Schroeder, X. Han, L. Hu, S.B. Lee, G.W. Rubloff, M. Noked, Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9(6), 5884 (2015)

    CAS  Article  Google Scholar 

  56. 56.

    A.C. Kazyak, K.N. Wood, N.P. Dasgupta, Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 27(18), 6457 (2015)

    CAS  Article  Google Scholar 

  57. 57.

    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  Google Scholar 

  58. 58.

    G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558 (1993)

    CAS  Article  Google Scholar 

  59. 59.

    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    CAS  Article  Google Scholar 

  60. 60.

    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    CAS  Article  Google Scholar 

  61. 61.

    P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994)

    Article  Google Scholar 

  62. 62.

    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758 (1999)

    CAS  Article  Google Scholar 

  63. 63.

    K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, and R. G. Hennig: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140(8) (2014)

  64. 64.

    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886 (2004)

    Article  CAS  Google Scholar 

  65. 65.

    J.S. Filhol, M.L. Doublet, An ab initio study of surface electrochemical disproportionation: the case of a water monolayer adsorbed on a Pd(1 1 1) surface. Catal. Today 202(1), 87 (2013)

    CAS  Article  Google Scholar 

  66. 66.

    J.S. Filhol, M.L. Doublet, Conceptual surface electrochemistry and new redox descriptors. J. Phys. Chem. C 118(33), 19023 (2014)

    CAS  Article  Google Scholar 

  67. 67.

    J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G.D. Peterson, R. Roskies, J.R. Scott, and N. Wilkins-Diehr, XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(5), 62 (2014)

    Article  CAS  Google Scholar 

Download references


G.W. and Q.Y. contributed equally to this work. This work was supported by the Center for Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR), an Energy Frontier Research Center funded by the United States Department of Energy, Office of Science, Basic Energy Sciences under Award No. DESC0019381. D.L. is grateful for her one-year support through the Joint PhD Training Fellowship Program from the University of Chinese Academy of Sciences. The authors also would like to thank Dr. Lele Peng for his helpful discussions throughout the course of the project. This work used the shared user facilities at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure supported by the National Science Foundation (Grant ECCS-1542148). The calculations were performed on the Hoffman2 cluster at the UCLA Institute for Digital Research and Education (IDRE), and the Extreme Science and Engineering Discovery Environment (XSEDE)[67], which is supported by National Science Foundation grant number ACI- 1548562, through allocation TG-CHE170060.

Author information



Corresponding author

Correspondence to Bruce Dunn.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5473 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whang, G., Yan, Q., Li, D. et al. Avoiding dendrite formation by confining lithium deposition underneath Li–Sn coatings. Journal of Materials Research (2021). https://doi.org/10.1557/s43578-020-00047-8

Download citation