Oxygen-functionalized alkyne precursors in carbon nanotube growth

Abstract

Functionalization of carbon nanotubes (CNTs) with heteroatoms enables covalent attachment, opening up a world of potential material structures. However, common functionalization techniques are hazardous and lack precision. Here, we evaluate an in situ functionalization technique using oxygen-containing alkyne precursors. CNTs were successfully derived from propargyl alcohol and propiolic acid, growing at a rate of 67 ± 7 and 19 ± 3 µm min–1, respectively. While there was no substantial increase in the oxygen content of resultant CNT structures (all less than 1% O), Fourier transform infrared spectroscopy revealed subtle incorporations of carboxyl and hydroxyl functionality. An analysis of reactor effluent showed that both oxygen-containing species shed oxygen groups, where propargyl alcohol yielded a reactive atmosphere high in methylacetylene, and propiolic acid thermally degraded to acetylene and CO2, potentially explaining the enhanced catalyst lifetimes (approximately 75 min). These results support the universality of alkyne-promoting chemistries and delineate the limits of stable, oxygen-bearing alkynes to support point-directed functionalization schemes.

Impact statement

Evidence that carbon nanotubes (CNTs) can form from intact C2-C4 subunits, primarily as alkynes, in a polymerization-like growth mechanism opened the doors for functionalized alkynes to direct the placement of heteroatoms in CNT lattice structures. If possible, this would alleviate the need for ex situ functionalization, the costs and environmental burdens associated with high concentration acid processing, and eliminate the random nature currently limiting CNT functionalization. Here, we demonstrate that oxygen-functionalized alkynes dominantly shed their oxygen-containing groups prior to or simultaneously with incorporation in the CNT, resulting in limited incorporation of oxygen groups into the CNT structure. As a whole, the work sheds light on fundamental reaction processes that give rise to carbonaceous nanostructures through polymerization and defines the limits of current in situ functionalization strategies.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    T. Ramanathan, F.T. Fisher, R.S. Ruoff, L.C. Brinson, Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 17(6), 1290 (2005)

    CAS  Article  Google Scholar 

  2. 2.

    F.A. Abuilaiwi, T. Laoui, M. Al-Harthi, M.A. Atieh, Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification. Arab. J. Sci. Eng. 35(1 C), 37 (2010)

  3. 3.

    M.K. Bayazit, K.S. Coleman, Ester-Functionalized single-walled carbon nanotubes via addition of haloformates. J. Mater. Sci. 49(14), 5190 (2014)

    CAS  Article  Google Scholar 

  4. 4.

    H. Liu, B. Xu, X. Yang, Z. Li, Z. Mo, Y. Yao, S. Lin, Ultraviolet and infrared two-wavelength modulated self-healing materials based on azobenzene-functionalized carbon nanotubes. Compos. Commun. 19(April), 233 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    L.G. Wade Jr., Organic Chemistry, 7th ed. (Pearson Prentice Hall, Upper Saddle River, NJ, 2010)

    Google Scholar 

  6. 6.

    K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, D.H. Fairbrother, Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon N.Y. 49(1), 24 (2011)

  7. 7.

    H. Hu, B. Zhao, M.E. Itkis, R.C. Haddon, Nitric acid purification of single-walled carbon nanotubes. J. Phys. Chem. B 107(50), 13838 (2003)

    CAS  Article  Google Scholar 

  8. 8.

    M.J. Eckelman, M.S. Mauter, J.A. Isaacs, M. Elimelech, New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. Environ. Sci. Technol. 46(5), 2902 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice (Oxford University Press, New York, 1998)

    Google Scholar 

  10. 10.

    R.T.K. Baker, Catalytic growth of carbon filaments. Carbon N.Y. 27(3), 315 (1989)

  11. 11.

    E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, VLS-growth of carbon nanotubes from the vapor. Chem. Phys. Lett. 317(1–2), 65 (2000)

  12. 12.

    A. Shaikjee, N.J. Coville, The role of the hydrocarbon source on the growth of carbon materials. Carbon N.Y. 50(10), 3376 (2012)

  13. 13.

    A. Shaikjee, N.J. Coville, The effect of substituted alkynes on nickel catalyst morphology and carbon fiber growth. Carbon N.Y. 50(3), 1099 (2012)

  14. 14.

    G.D. Nessim, M. Seita, D.L. Plata, K.P. O’Brien, A. John Hart, E.R. Meshot, C.M. Reddy, P.M. Gschwend, C.V. Thompson, Precursor gas chemistry determines the crystallinity of carbon nanotubes synthesized at low temperature. Carbon N.Y. 49(3), 804 (2011)

  15. 15.

    M.J. Giannetto, The Roles of Alkynes in Improving the Control and Sustainability of Carbon Nanotube Synthesis (Yale University, New Haven, CT, 2019)

    Google Scholar 

  16. 16.

    D.L. Plata, E.R. Meshot, C.M. Reddy, A.J. Hart, P.M. Gschwend, Multiple alkynes react with ethylene to enhance carbon nanotube synthesis, suggesting a polymerization-like formation mechanism. ACS Nano 4(12), 7185 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    R. Hochstrasser, J. Wirz, Ethynol: photochemical generation in an argon matrix, IR spectrum, and photoisomerization to ketene. Angew. Chemie Int. Ed. English 28(2), 181 (1989)

    Article  Google Scholar 

  18. 18.

    Sigma-Aldrich. Safety Data Sheet: Propiolic Acid v. 6.2 https://www.sigmaaldrich.com/MSDS/MSDS/PrintMSDSAction.do?name=msdspdf_2007213105156685. Accessed 31 July 2020

  19. 19.

    Sigma-Aldrich. Safety Data Sheet: Propargyl Alcohol v. 6.1 https://www.sigmaaldrich.com/MSDS/MSDS/PrintMSDSAction.do?name=msdspdf_2007213103059836. Accessed 31 July 2020

  20. 20.

    S.A. Thakur, G.P. Flake, G.S. Travlos, J.A. Dill, S.L. Grumbein, S.J. Harbo, M.J. Hooth, Evaluation of propargyl alcohol toxicity and carcinogenicity in F344/N rats and B6C3F1/N mice following whole-body inhalation exposure. Toxicology 314(1), 100 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    R. Xiang, B. Hou, E. Einarsson, P. Zhao, S. Harish, K. Morimoto, Y. Miyauchi, S. Chiashi, Z. Tang, S. Maruyama, Carbon atoms in ethanol do not contribute equally to formation of single-walled carbon nanotubes. ACS Nano 7(4), 3095 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    Y. Zhang, J.M. Gregoire, R.B. van Dover, A.J. Hart, Ethanol-promoted high-yield growth of few-walled carbon nanotubes. J. Phys. Chem. C 114(14), 6389 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    H. Sugime, S. Noda, Millimeter-tall single-walled carbon nanotube forests grown from ethanol. Carbon N. Y. 48(8), 2203 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    A. Magrez, J.W. Seo, V.L. Kuznetsov, L. Forró, Evidence of an equimolar C2H2–CO2 reaction in the synthesis of carbon nanotubes. Angew. Chemie Int. Ed. 46(3), 441 (2007)

    CAS  Article  Google Scholar 

  25. 25.

    A. Magrez, J.W. Seo, R. Smajda, B. Korbely, J.C. Andresen, M. Mionić, S. Casimirius, L. Forró, Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction. ACS Nano 4(7), 3702 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    W. Shi, Y. Peng, S.A. Steiner, J. Li, D.L. Plata, Carbon dioxide promotes dehydrogenation in the equimolar C2H2-CO2 reaction to synthesize carbon nanotubes. Small 14(11), 1 (2018)

    Google Scholar 

  27. 27.

    W. Shi, J. Li, E.S. Polsen, C.R. Oliver, Y. Zhao, E.R. Meshot, M. Barclay, D.H. Fairbrother, A.J. Hart, D.L. Plata, Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes. Nanoscale 9(16), 5222 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    A.J. Hart, L. Van Laake, A.H. Slocum, Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3(5), 772 (2007)

    CAS  Article  Google Scholar 

  29. 29.

    E.R. Meshot, D.W. Zwissler, N. Bui, T.R. Kuykendall, C. Wang, A. Hexemer, K.J.J. Wu, F. Fornasiero, Quantifying the hierarchical order in self-aligned carbon nanotubes from atomic to micrometer scale. ACS Nano 11(6), 5405 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    M. Xu, D.N. Futaba, M. Yumura, K. Hata, Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ACS Nano 6(7), 5837 (2012)

    CAS  Article  Google Scholar 

  31. 31.

    J. Carpena-Núñez, J.A. Boscoboinik, S. Saber, R. Rao, J.Q. Zhong, M.R. Maschmann, P.R. Kidambi, N.T. Dee, D.N. Zakharov, A.J. Hart, E.A. Stach, B. Maruyama, Isolating the roles of hydrogen exposure and trace carbon contamination on the formation of active catalyst populations for carbon nanotube growth. ACS Nano 13(8), 8736 (2019)

    Article  CAS  Google Scholar 

  32. 32.

    S. lijima, T. Ichihashi, Y. Ando, Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356(6372), 776 (1992)

  33. 33.

    N. Anderson, A. Hartschuh, L. Novotny, Chirality changes in carbon nanotubes studied with near-field raman spectroscopy. Nano Lett. 7(3), 577 (2007)

    CAS  Article  Google Scholar 

  34. 34.

    E.R. Meshot, M. Bedewy, K.M. Lyons, A.R. Woll, K.A. Juggernauth, S. Tawfick, A.J. Hart, Measuring the lengthening kinetics of aligned nanostructures by spatiotemporal correlation of height and orientation. Nanoscale 2(6), 896 (2010)

    Article  Google Scholar 

  35. 35.

    J. Blanco, E.J. García, R. Guzmán De Villoria, B.L. Wardle, Limiting mechanisms of mode in interlaminar toughening of composites reinforced with aligned carbon nanotubes. J. Compos. Mater. 43(8), 825 (2009)

    CAS  Article  Google Scholar 

  36. 36.

    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637 (2000)

    CAS  Article  Google Scholar 

  37. 37.

    L. Yang, L. Tong, X. He, Molecular dynamic simulation of sword-sheath extraction behavior in CNT reinforced composite. Polym. Polym. Compos. 19(2–3), 113 (2011)

    CAS  Google Scholar 

  38. 38.

    L.M. Pasquini, R.C. Sekol, A.D. Taylor, L.D. Pfefferle, J.B. Zimmerman, Realizing comparable oxidative and cytotoxic potential of single- and multiwalled carbon nanotubes through annealing. Environ. Sci. Technol. 47(15), 8775 (2013)

    CAS  Google Scholar 

  39. 39.

    E. Desimoni, G.I. Casella, A.M. Salvi, T.R.I. Cataldi, A. Morone, XPS investigation of ultra-high-vacuum storage effects on carbon fibre surfaces. Carbon N. Y. 30(4), 527 (1992)

    CAS  Article  Google Scholar 

  40. 40.

    K.A. Wepasnick, B.A. Smith, J.L. Bitter, D.H. Fairbrother, Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem. 396(3), 1003 (2010)

    CAS  Article  Google Scholar 

  41. 41.

    B. Smith, Infrared Spectral Interpretation, 1st ed. (CRC Press, Boca Raton, FL, 2018)

    Google Scholar 

  42. 42.

    P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (Elsevier, Saint Louis, MO, 2011)

    Google Scholar 

  43. 43.

    G.G. Kebede, P.D. Mitev, W.J. Briels, K. Hermansson, Red-shifting and blue-shifting OH groups on metal oxide surfaces—towards a unified picture. Phys. Chem. Chem. Phys. 20(18), 12678 (2018)

    CAS  Article  Google Scholar 

  44. 44.

    T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D.N. Futaba, M. Yumura, S. Iijima, K. Hata, Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 8(12), 4288 (2008)

    CAS  Article  Google Scholar 

  45. 45.

    P.B. Amama, C.L. Pint, L. McJilton, S.M. Kim, E.A. Stach, P.T. Murray, R.H. Hauge, B. Maruyama, Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9(1), 44 (2009)

    CAS  Article  Google Scholar 

  46. 46.

    K. Hasegawa, S. Noda, Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water. ACS Nano 5(2), 975 (2011)

    CAS  Article  Google Scholar 

  47. 47.

    X. Li, X. Zhang, L. Ci, R. Shah, C. Wolfe, S. Kar, S. Talapatra, P.M. Ajayan, Air-assisted growth of ultra-long carbon nanotube bundles. Nanotechnology 19(45), 455609 (2008)

    Article  CAS  Google Scholar 

  48. 48.

    T. Sato, H. Sugime, S. Noda, CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis. Carbon N.Y. 136, 143 (2018)

  49. 49.

    M. Frenklach, D.W. Clary, T. Yuan, W.C. Gardiner, S.E. Stein, Mechanism of soot formation in acetylene-oxygen mixtures. Combust. Sci. Technol. 50, 79 (1986)

    CAS  Article  Google Scholar 

  50. 50.

    H.S. Hura, I. Glassman, Fuel oxygen effects on soot formation in counterflow diffusion flames. Combust. Sci. Technol. 53(1), 1 (1987)

    CAS  Article  Google Scholar 

  51. 51.

    U. Vandsburger, I. Kennedy, I. Glassman, Sooting counterflow diffusion flames with varying oxygen index, Combust. Sci. Technol. 39(1–6), 263 (1984)

    CAS  Article  Google Scholar 

  52. 52.

    S. Hofmann, R. Blume, C.T. Wirth, M. Cantoro, R. Sharma, C. Ducati, M. Hävecker, S. Zafeiratos, P. Schnoerch, A. Oestereich, D. Teschner, M. Albrecht, A. Knop-Gericke, R. Schlögl, J. Robertson, State of transition metal catalysts during carbon nanotube growth. J. Phys. Chem. C 113(5), 1648 (2009)

    CAS  Article  Google Scholar 

  53. 53.

    S.A. Steiner, T.F. Baumann, B.C. Bayer, R. Blume, M.A. Worsley, W.J. MoberlyChan, E.L. Shaw, R. Schlögl, A.J. Hart, S. Hofmann, B.L. Wardle, Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J. Am. Chem. Soc. 131(34), 12144 (2009)

    CAS  Article  Google Scholar 

  54. 54.

    D.L. Plata, A.J. Hart, C.M. Reddy, P.M. Gschwend, Early evaluation of potential environmental impacts of carbon nanotube synthesis by chemical vapor deposition. Environ. Sci. Technol. 43(21), 8367 (2009)

    CAS  Article  Google Scholar 

  55. 55.

    Z. Li, Y. Xu, X. Ma, E. Dervishi, V. Saini, A.R. Biris, D. Lupu, A.S. Biris, CO2 enhanced carbon nanotube synthesis from pyrolysis of hydrocarbons. Chem. Commun. 28, 3260 (2008)

    Article  CAS  Google Scholar 

  56. 56.

    H. Richter, J.B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26(4–6), 565 (2000)

    CAS  Article  Google Scholar 

  57. 57.

    M. Crespo-Quesada, F. Cárdenas-Lizana, A.-L. Dessimoz, L. Kiwi-Minsker, Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2(8), 1773 (2012)

    CAS  Article  Google Scholar 

  58. 58.

    W. Shi, K. Xue, E.R. Meshot, D.L. Plata, The carbon nanotube formation parameter space: data mining and mechanistic understanding for efficient resource use. Green Chem. 19(16), 3787 (2017)

    CAS  Article  Google Scholar 

  59. 59.

    A.M. Kolpak, J.C. Grossman, Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett. 11(8), 3156 (2011)

    CAS  Article  Google Scholar 

  60. 60.

    N.T. Dee, M. Bedewy, A. Rao, J. Beroz, B. Lee, E.R. Meshot, C.A.C. Chazot, P.R. Kidambi, H. Zhao, T. Serbowicz, K. Teichert, P.K. Purohit, A.J. Hart, In situ mechanochemical modulation of carbon nanotube forest growth. Chem. Mater. 31(2), 407 (2019)

    CAS  Article  Google Scholar 

  61. 61.

    J.F. Hartwig, M.A. Larsen, Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2(5), 281 (2016)

    CAS  Article  Google Scholar 

  62. 62.

    L. van Laake, A.J. Hart, A.H. Slocum, Suspended heated silicon platform for rapid thermal control of surface reactions with application to carbon nanotube synthesis. Rev. Sci. Instrum. 78(8), 083901 (2007)

    Article  CAS  Google Scholar 

  63. 63.

    E.R. Meshot, D.L. Plata, S. Tawfick, Y. Zhang, E.A. Verploegen, A.J. Hart, Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. ACS Nano 3(9), 2477 (2009)

    CAS  Article  Google Scholar 

  64. 64.

    M. Bedewy, E.R. Meshot, H. Guo, E.A. Verploegen, W. Lu, A.J. Hart, Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J. Phys. Chem. C 113(48), 20576 (2009)

    CAS  Article  Google Scholar 

  65. 65.

    E.R. Meshot, A.J. Hart, Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92(11), 1 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Yale University and the National Science Foundation Award #1552993, as well as Eric Meshot, Nina Jankovic, Patrick Boisvert, Libby Shaw, Suchol Savagatrup, Maggie He, Mousumi Ghosh, David Veysset, Daryl Smith, and Matt Maschmann for helpful training and discussion. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award #DMR-1419807. Additional analyses were conducted at the MIT Institute for Soldier Nanotechnologies, and the Yale West Campus Analytical Core.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Desirée L. Plata.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or other disclosures.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2314 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, E.P., Shi, W. & Plata, D.L. Oxygen-functionalized alkyne precursors in carbon nanotube growth. MRS Bulletin (2021). https://doi.org/10.1557/s43577-020-00019-7

Download citation