High Pressure Induced Binding Between Linear Carbon Chains and Nanotubes

Abstract

Recent studies of single-walled carbon nanotubes (CNTs) in aqueous media have showed that water can significantly affect the tube mechanical properties. CNTs under hydrostatic compression can preserve their elastic properties up to large pressure values, while exhibiting exceptional resistance to mechanical loadings. It was experimentally observed that CNTs with encapsulated linear carbon chains (LCCs), when subjected to high hydrostatic pressure values, present irreversible red shifts in some of their vibrational frequencies. In order to address the cause of this phenomenon, we have carried out fully atomistic reactive (ReaxFF) molecular dynamics (MD) simulations for model structures mimicking the experimental conditions. We have considered the cases of finite and infinite (cyclic boundary conditions) CNTs filled with LCCs (LCC@CNTs) of different lengths (from 9 up to 40 atoms). Our results show that increasing the hydrostatic pressure causes the CNT to be deformed in an inhomogeneous way due to the LCC presence. The LCC/CNT interface regions exhibit convex curvatures, which results in more reactive sites, thus favoring the formation of covalent chemical bonds between the chain and the nanotube. This process is irreversible with the newly formed bonds continuing to exist even after releasing the external pressure and causing an irreversibly red shift in the chain vibrational modes from 1850 to 1500 cm−1.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. Vijayaraghavan and C. H. Wong, Computational Materials Science 79, 519 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    C. H. Wong and V. Vijayaraghavan, Physics Letters A 378, 570 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    A. G. Souza Filho, private communication, to be published.

  4. 4.

    A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, J. Phys. Chem. A 105, 9396 (2001).

    Article  Google Scholar 

  5. 5.

    K. Chenoweth, A. C. T. van Duin, and W. A. Goddard, J. Phys. Chem. A 112, 1040 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    J. E. Mueller, A. C. T. van Duin, and W. A. Goddard III, J. Phys. Chem. C 114, 4939 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    W. J. Mortier, S. K. Ghosh, and S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986).

    CAS  Article  Google Scholar 

  8. 8.

    S. Plimpton, Journal of Computational Physics 117, 1 (1995).

    CAS  Article  Google Scholar 

  9. 9.

    S. V. Zybin, W. A. Goddard, P. Xu, A. C. T. van Duin, and A. P. Thompson, Appl. Phys. Lett. 96, 081918 (2010).

    Article  Google Scholar 

  10. 10.

    D. Srivastava, D. W. Brenner, J. D. Schall, K. D. Ausman, M. Yu, and R. S. Ruoff, J. Phys. Chem. B 103, 4330 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    Z. Chen, W. Thiel, and A. Hirsch, ChemPhysChem 4, 93 (2002).

    Article  Google Scholar 

  12. 12.

    T. Lin, W.-D. Zhang, J. Huang, and C. He, J. Phys. Chem. B 109, 13755 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    X. Zhao, Y. Ando, Y. Liu, M. Jinno, and T. Suzuki, Phys. Rev. Lett. 90, 187401 (2003).

    Article  Google Scholar 

  14. 14.

    K. McGuire, N. Gothard, P. L. Gai, M. S. Dresselhaus, G. Sumanasekera, G. Sumanasekera, A. M. Rao, and A. M. Rao, Carbon 43, 219 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    M. Jinno, Y. Ando, S. Bandow, J. Fan, M. Yudasaka, and S. Iijima, Chemical Physics Letters 418, 109 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Brazilian Agencies CAPES, CNPq and FAPESP. The authors thank the Center for Computational Engineering and Sciences at Unicamp for financial support through the FAPESP/CEPID Grant # 2013/08293-7.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nádia F. Andrade.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brunetto, G., Andrade, N.F., Galvão, D.S. et al. High Pressure Induced Binding Between Linear Carbon Chains and Nanotubes. MRS Online Proceedings Library 1752, 53–58 (2015). https://doi.org/10.1557/opl.2015.91

Download citation