Piezo-resistive Pressure Sensor Array with Photo-thermally Reduced Graphene Oxide

Abstract

We report a highly sensitive pressure sensor fabricated by photo-thermally reduced Graphene oxide (GO) with silver nano wires (AgNWs). Pressure sensors are fabricated in form of the inter-digitated capacitors (IDC) composed of two finger electrodes with pattern width of 500 µm. The fabricated IDCs are compared to the previously reported MEMS-based pressure sensors’ sensitivity. The fabricated sensor is easily attachable on any surface for monitoring applied forces or pressure and maintains excellent electrical conductivity under high mechanical stress and thus holds promise for durable bio-medical sensors.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    A. D. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. Lasers Eng., vol. 34, no. 1, pp. 15–45, Jul. 2000.

    Article  Google Scholar 

  2. 2.

    Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today, vol. 5, no. 1, pp. 15–20, Feb. 2010.

    CAS  Article  Google Scholar 

  3. 3.

    E. Kymakis, C. Petridis, T. D. Anthopoulos, and E. Stratakis, “Laser-Assisted Reduction of Graphene Oxide for Flexible, Large-Area Optoelectronics,” IEEE J. Sel. Top. Quantum Electron. vol. 20, no. 1, pp. 106–115, Jan. 2014.

    Article  Google Scholar 

  4. 4.

    M. Zhang and Z. Wang, “Nanostructured silver nanowires-graphene hybrids for enhanced electrochemical detection of hydrogen peroxide,” Appl. Phys. Lett., vol. 102, no. 21, p. 213104, May 2013.

    Article  Google Scholar 

  5. 5.

    I. Jurewicz, A. Fahimi, P. E. Lyons, R. J. Smith, M. Cann, M. L. Large, M. Tian, J. N. Coleman, and A. B. Dalton, “Insulator-Conductor Type Transitions in Graphene-Modified Silver Nanowire Networks: A Route to Inexpensive Transparent Conductors,” Adv. Funct. Mater., vol. 24, no. 48, pp. 7580–7587, Dec. 2014.

    CAS  Article  Google Scholar 

  6. 6.

    M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene–Metal Nanowire Hybrid Structures,” Nano Lett., vol. 13, no. 6, pp. 2814–2821, Jun. 2013.

    CAS  Article  Google Scholar 

  7. 7.

    I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, R. Piner, G. Shvets, and R. S. Ruoff, “Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires,” Nano Lett., vol. 12, no. 11, pp. 5679–5683, Nov. 2012.

    CAS  Article  Google Scholar 

  8. 8.

    G. Eda and M. Chhowalla, “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics,” Adv. Mater., vol. 22, no. 22, pp. 2392–2415, Jun. 2010.

    CAS  Article  Google Scholar 

  9. 9.

    J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, “Structural coherency of graphene on Ir(111),” Nano Lett., vol. 8, no. 2, pp. 565–570, Feb. 2008.

    CAS  Article  Google Scholar 

  10. 10.

    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, no. 5932, pp. 1312–1314, Jun. 2009.

    CAS  Article  Google Scholar 

  11. 11.

    S.-E. Zhu, M. K. Ghatkesar, C. Zhang, and G. C. a. M. Janssen, “Graphene based piezoresistive pressure sensor,” Appl. Phys. Lett., vol. 102, no. 16, p. 161904, Apr. 2013.

    Article  Google Scholar 

  12. 12.

    J. H. Lee, P. Lee, D. Lee, S. S. Lee, and S. H. Ko, “Large-Scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth,” Cryst. Growth Des., vol. 12, no. 11, pp. 5598–5605, Nov. 2012.

    Article  Google Scholar 

  13. 13.

    C. Petridis, Y.-H. Lin, K. Savva, G. Eda, E. Kymakis, T. D. Anthopoulos, and E. Stratakis, “Post-fabrication, in situ laser reduction of graphene oxide devices,” Appl. Phys. Lett., vol. 102, no. 9, p. 093115, Mar. 2013.

    Article  Google Scholar 

  14. 14.

    J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, “Reduction of graphene oxide via L-ascorbic acid,” Chem. Commun., vol. 46, no. 7, pp. 1112–1114, Feb. 2010.

    CAS  Article  Google Scholar 

  15. 15.

    D. A. Sokolov, K. R. Shepperd, and T. M. Orlando, “Formation of Graphene Features from Direct Laser-Induced Reduction of Graphite Oxide,” J. Phys. Chem. Lett., vol. 1, no. 18, pp. 2633–2636, Sep. 2010.

    CAS  Article  Google Scholar 

  16. 16.

    J. Kim, J. H. Jong, and W. S. Kim, “Repeatedly Bendable Paper Touch Pad via Direct Stamping of Silver Nanoink With Pressure-Induced Low-Temperature Annealing,” IEEE Trans. Nanotechnol., vol. 12, no. 6, pp. 1139–1143, Nov. 2013.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rouzbeh Kazemzadeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazemzadeh, R., Kim, W.S. Piezo-resistive Pressure Sensor Array with Photo-thermally Reduced Graphene Oxide. MRS Online Proceedings Library 1798, 2 (2015). https://doi.org/10.1557/opl.2015.785

Download citation