Materials Development for High Efficiency Superconducting Nanowire Single-Photon Detectors


Superconducting nanowire single-photon detectors (SNSPDs) based on ultra-thin films have become the preferred technology for applications that require high efficiency single-photon detectors with high speed, high timing resolution, and low dark count rates at near-infrared wavelengths. Since demonstration of the first SNSPD using NbN thin films, an increasingly larger number of materials are being explored. We investigate amorphous thin film alloys of MoSi, MoGe, and WRe with the goal of optimizing SNSPDs for higher operating temperature, high efficiency and high speed. To explore material adequacy for SNSPDs, we have measured superconducting transition temperature (Tc) as a function of film thickness and sheet resistance, as well as critical current densities. In this paper we present our results comparing these materials to WSi, another amorphous material widely used for SNSPD devices.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, Appl. Phys. Lett. 79, 705–707 (2001).

    Article  Google Scholar 

  2. 2.

    F. Marsili, V.B. Verma, J.A. Stem, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, RP. Mirin and S. Nam, Nature Phot. 7, 210-214(2013).

  3. 3.

    V.B. Verma, A.E. Lita, M.R. Vissers, F. Marsili, D.P. Pappas, R.P. Mirinand S. Nam, Appl. Phys. Lett. 105, 022602 (2014).

    Article  Google Scholar 

  4. 4.

    Materials parameters: for NbN: Matthias V.B.C.B.T. Rev.Mod.Phys., 35, 1 (1963), Marsili F., Opt. Express 16, 3191 (2008), Antonova A. SovPhys. JETP 53, 1270 (1981); for WSi: Kondo S, J. Mater. Res., 7, 853 (1992), [2]; for MoSi: Smith A.W., Phys. Rev. B 49, 12927 (1994), Yu P Korneeva et. al., Supercond. Sci. Technol. 27, 095012 (2014); for MoGe: Bezryadin A., Superconductivity in Nanowires: Fabrication and Quantum Transport (2013); for WRe; present work.

  5. 5.

    Y.Ivry, C. Kim, A.E. Dane, D. Fazio, A.N. McCaughan, K.A. Sunter, Q. Zhao, and K.K. Berggren, Phys. Rev. B 90, 214515 (2014).

    Article  Google Scholar 

  6. 6.

    K.Il'in , D. Rall, M. Siegel, A. Engel, A. Schilling, A. Semenov, H.-W. Huebers, Physica C 470, 953-956 (2010).

  7. 7.

    Marsili, F. et al. Hotspot relaxation dynamics in a current-carrying superconductor. submitted.

Download references

Author information



Corresponding author

Correspondence to A. E. Lita.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lita, A.E., Verma, V.B., Horansky, R.D. et al. Materials Development for High Efficiency Superconducting Nanowire Single-Photon Detectors. MRS Online Proceedings Library 1807, 1 (2015).

Download citation