Structure and Bonding Properties of a 20-Gold-Atom Nanocluster Studied by Theoretical X-ray Absorption Spectroscopy

Abstract

Gold nanoclusters with precisely controlled atomic composition have emerged as promising materials for applications in nanotechnology because of their unique optical, electronic and catalytic properties. The recent discovery of a 20-gold-atom nanocluster protected by 16 organothiolate molecules, Au20(SR)16, is the smallest member in a surprising series of small gold−thiolate nanoclusters with a face-centered cubic (FCC) ordered core structures. A fundamental challenge facing gold nanocluster research is being able to understand the composition-dependent properties from a site-specific perspective in order to confidently establish structure-property relationships. A step in this direction is to examine the influence of various structural features (core geometry and thiolate-gold bonding motifs) on the bonding properties of gold-thiolate nanoclusters. In this work, ab initio simulations were conducted to systematically study the local structure and electronic properties of Au20(SR)16 from each unique Au and S atomic site using Au L3-edge extended X-ray absorption fine structure (EXAFS), projected density of states (l-DOS) and S K-edge X-ray absorption near edge structure (XANES) spectra. Two larger FCC-like gold-thiolate nanoclusters (Au28(SR)20 and Au36(SR)24) were used for a comparative study with Au20(SR)16, providing further predictions about the cluster size effect on the bonding properties of gold-thiolate nanoclusters with FCC-like core structures. Through this comparison, the smaller core size of Au20(SR)16 produces an EXAFS scattering signature that is non-FCC-like but shows very similar electronic properties with a larger FCC-like gold-thiolate nanocluster.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Daniel, M. C; Astruc, D. Chem. Rev., 104, 293–346. (2004)

    CAS  Article  Google Scholar 

  2. [2]

    Love, J. C; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 105, 1103–1169 (2005).

    CAS  Article  Google Scholar 

  3. [3]

    Sardar, R.; Funston, A. M.; Mulvaney, R; Murray, R. W. Langmuir 25, 13840–13851 (2009).

    CAS  Article  Google Scholar 

  4. [4]

    Jin, R. Nanoscale 2, 343–362 (2010).

    CAS  Article  Google Scholar 

  5. [5]

    Jadzinsky, R D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science, 318, 430–133 (2007).

    CAS  Article  Google Scholar 

  6. [6]

    MacDonald, M. A.; Chevrier, D. M.; Zhang, R; Qian, H. R; Jin, R. C, J. Phys. Chem. C, 115, 15282–15287(2011).

    CAS  Article  Google Scholar 

  7. [7]

    MacDonald, M. A.; Zhang, R; Chen, N.; Qian, H. R; Jin, R. C. , J. Phys. Chem. C, 115, 65–69 (2011).

    CAS  Article  Google Scholar 

  8. [8]

    MacDonald, M. A.; Zhang, P.; Qian, H. R; Jin, R. C, J. Phys. Chem. Lett., 1, 1821–1825 (2010).

    CAS  Article  Google Scholar 

  9. [9]

    Zeng, C; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc, 135, 10011–10013 (2013).

    CAS  Article  Google Scholar 

  10. [10]

    Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Hakkinen, H. J.Am. Chem. Soc, 136, 5000–5005 (2014).

    CAS  Article  Google Scholar 

  11. [11]

    Zeng, C; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 51, 13114–13118 (2012).

    CAS  Article  Google Scholar 

  12. [12]

    Macdonald, M. A.; Chen, N.; Qian, H.; Zhang, P.; Jin, R. J. Phys. Chem. C, 115, 65, (2011).

    CAS  Article  Google Scholar 

  13. [13]

    Macdonald, M. A.; Chevrier, D. M.; Qian, H.; Zhang, P.; Jin, R. J. Phys. Chem. C, 115, 15282(2011).

    CAS  Article  Google Scholar 

  14. [14]

    Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Phys. Rev. B, 58, 7565 (1998).

    CAS  Article  Google Scholar 

  15. [15]

    Zeng, C; Liu, C; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc, 136, 11922–11925 (2014).

    CAS  Article  Google Scholar 

  16. [16]

    Chevrier, D. M.; Zeng, C; Jin, R.; Chatt, A.; Zhang, P. J. Phys. Chem. C, 119, 1217–1223 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Chevrier, D.M. & Zhang, P. Structure and Bonding Properties of a 20-Gold-Atom Nanocluster Studied by Theoretical X-ray Absorption Spectroscopy. MRS Online Proceedings Library 1802, 5 (2015). https://doi.org/10.1557/opl.2015.516

Download citation