Skip to main content
Log in

Structure and Bonding Properties of a 20-Gold-Atom Nanocluster Studied by Theoretical X-ray Absorption Spectroscopy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Gold nanoclusters with precisely controlled atomic composition have emerged as promising materials for applications in nanotechnology because of their unique optical, electronic and catalytic properties. The recent discovery of a 20-gold-atom nanocluster protected by 16 organothiolate molecules, Au20(SR)16, is the smallest member in a surprising series of small gold−thiolate nanoclusters with a face-centered cubic (FCC) ordered core structures. A fundamental challenge facing gold nanocluster research is being able to understand the composition-dependent properties from a site-specific perspective in order to confidently establish structure-property relationships. A step in this direction is to examine the influence of various structural features (core geometry and thiolate-gold bonding motifs) on the bonding properties of gold-thiolate nanoclusters. In this work, ab initio simulations were conducted to systematically study the local structure and electronic properties of Au20(SR)16 from each unique Au and S atomic site using Au L3-edge extended X-ray absorption fine structure (EXAFS), projected density of states (l-DOS) and S K-edge X-ray absorption near edge structure (XANES) spectra. Two larger FCC-like gold-thiolate nanoclusters (Au28(SR)20 and Au36(SR)24) were used for a comparative study with Au20(SR)16, providing further predictions about the cluster size effect on the bonding properties of gold-thiolate nanoclusters with FCC-like core structures. Through this comparison, the smaller core size of Au20(SR)16 produces an EXAFS scattering signature that is non-FCC-like but shows very similar electronic properties with a larger FCC-like gold-thiolate nanocluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daniel, M. C; Astruc, D. Chem. Rev., 104, 293–346. (2004)

    Article  CAS  Google Scholar 

  2. Love, J. C; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  3. Sardar, R.; Funston, A. M.; Mulvaney, R; Murray, R. W. Langmuir 25, 13840–13851 (2009).

    Article  CAS  Google Scholar 

  4. Jin, R. Nanoscale 2, 343–362 (2010).

    Article  CAS  Google Scholar 

  5. Jadzinsky, R D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science, 318, 430–133 (2007).

    Article  CAS  Google Scholar 

  6. MacDonald, M. A.; Chevrier, D. M.; Zhang, R; Qian, H. R; Jin, R. C, J. Phys. Chem. C, 115, 15282–15287(2011).

    Article  CAS  Google Scholar 

  7. MacDonald, M. A.; Zhang, R; Chen, N.; Qian, H. R; Jin, R. C. , J. Phys. Chem. C, 115, 65–69 (2011).

    Article  CAS  Google Scholar 

  8. MacDonald, M. A.; Zhang, P.; Qian, H. R; Jin, R. C, J. Phys. Chem. Lett., 1, 1821–1825 (2010).

    Article  CAS  Google Scholar 

  9. Zeng, C; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc, 135, 10011–10013 (2013).

    Article  CAS  Google Scholar 

  10. Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Hakkinen, H. J.Am. Chem. Soc, 136, 5000–5005 (2014).

    Article  CAS  Google Scholar 

  11. Zeng, C; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 51, 13114–13118 (2012).

    Article  CAS  Google Scholar 

  12. Macdonald, M. A.; Chen, N.; Qian, H.; Zhang, P.; Jin, R. J. Phys. Chem. C, 115, 65, (2011).

    Article  CAS  Google Scholar 

  13. Macdonald, M. A.; Chevrier, D. M.; Qian, H.; Zhang, P.; Jin, R. J. Phys. Chem. C, 115, 15282(2011).

    Article  CAS  Google Scholar 

  14. Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Phys. Rev. B, 58, 7565 (1998).

    Article  CAS  Google Scholar 

  15. Zeng, C; Liu, C; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc, 136, 11922–11925 (2014).

    Article  CAS  Google Scholar 

  16. Chevrier, D. M.; Zeng, C; Jin, R.; Chatt, A.; Zhang, P. J. Phys. Chem. C, 119, 1217–1223 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Chevrier, D.M. & Zhang, P. Structure and Bonding Properties of a 20-Gold-Atom Nanocluster Studied by Theoretical X-ray Absorption Spectroscopy. MRS Online Proceedings Library 1802, 5 (2015). https://doi.org/10.1557/opl.2015.516

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2015.516

Navigation