Molecular Imprinted Hydrogels in Drug Delivery Applications

Abstract

Molecular imprinting is the process by which molecules are imprinted into the matrix of a material through non-covalent bonding, including hydrogen bonding and van der Waals interactions. In this study hydrogels were imprinted with glaucoma medication with the purpose of creating a reusable ocular drug delivery device with reversible binding sites. The material was synthesized and tested with UV-Vis spectroscopy to determine the concentration of the released drug after twelve hours in distilled water. Modifications were made to the polymer to explore methods required for the proper delivery of the drug over an adequate period of time.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Bates, J. Magda, pH-Responsive Hydrogels and their Applications in Chemomechanical Sensors, ScienceJet 4 (2014) 128

    Google Scholar 

  2. 2.

    West J.L., Hubbell J.A., Photopolymerized hydrogel materials for drug delivery applications, Reactive Polymers, 25 (1995) 139–147.

    CAS  Article  Google Scholar 

  3. 3.

    Cunliffe D., Kirby A., Alexander C., Molecularly imprinted drug delivery systems, Advanced Drug Delivery Reviews, 57 (2005) 1836–1853.

    CAS  Google Scholar 

  4. 4.

    Herber S., Bomer J., Olthius W., Bergveld P., van den Berg A., A miniaturized carbon dioxide gas sensor based on sensing of pH-sensitive hydrogel swelling with a pressure sensor, Biomedical Microdevices, 7 3 (2005) 197–204.

    CAS  Article  Google Scholar 

  5. 5.

    J. Bates, J. Magda, Storage and Operational Stability of pH-Responsive Hydrogels, Global Journal of Science Frontier Research, 14 (2014) 6

    Google Scholar 

  6. 6.

    J. Bates, J. Magda, Chemomechanical pH Sensor Response Time and its Dependence on Hydrogel Thickness, Journal of Chemistry and Biochemistry (2015).

  7. 7.

    J. Bates, P. Tathireddy, S. Buetefisch, J. Magda, An Improved Design for Chemomechanical Sensors: The “Boss” Sensor, Chemosensors (2013)

  8. 8.

    Ciolino J.B., Hoare T.R., Iwata N.G., Behlau I., Dohlman C.H., Langer R., Kohane D. S. A drug-eluting contact lens, Investigative Ophthalmology and Visual Science, 50 7, (2009) 3346–3352.

    Article  Google Scholar 

  9. 9.

    Gulsen D., Chauhan A., Ophthalmic drug delivery through contact lenses, Investigative Ophthalmology and Visual Science, 45 7 (2004) 2342–2347.

    Article  Google Scholar 

  10. 10.

    Hu X., Hao L., Wang H., Yang H., Zhang G., Wang W., Zhang X., Hydrogel contact lens for extended delivery of ophthalmic drugs, International Journal of Polymer Science, (2011) 1–9.

  11. 11.

    Kearns V.R., Williams R.L., Drug delivery systems for the eye, Expert Review of Medical Devices, 6 3 (2009) 277–314.

    CAS  Article  Google Scholar 

  12. 12.

    Lorenzo C.A., Hiritani H., Amoza J.L.G., Pacheco R.M., Souto C., Concheiro A., Soft contact lenses capable of sustained delivery of timolol, Journal of Pharmaceutical Sciences, 91 10 (2002) 2182–2192.

    Article  Google Scholar 

  13. 13.

    Venkatesh S., Saha J., Pass S., Byrne M.E., Transport and structural analysis of molecular imprinted hydrogels for controlled drug delivery, European Journal of Pharmaceutics and Biopharmaceutics, 69 (2008) 852–860.

    CAS  Article  Google Scholar 

  14. 14.

    Xinming L., Yingde C., Lloyd A.W., Mikhalovsky S.V., Sandeman S.R., Howel C.A., Liewen L., Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: A review, Contact Lens and Anterior Eye, 31 (2008) 57–64.

    Article  Google Scholar 

  15. 15.

    Alexander C.L., Miller S.J., Abel S.R. Prostaglandin analog treatment of glaucoma and ocular hypertension, The Annals of Pharmacotherapy, 36 (2002) 504–511.

    CAS  Article  Google Scholar 

  16. 16.

    Byrne M.E., Park K., Peppas N.A., Molecular imprinting within hydrogels, Advanced Drug Delivery Reviews, 54 (2001) 149–161.

    Article  Google Scholar 

  17. 17.

    Hillberg A.L., Brain K.R. Allender C.J., Molecular imprinter polymer sensors: Implications for therapeutics, Advanced Drug Delivery Reviews, 57 (2005) 1875–1889.

    CAS  Google Scholar 

  18. 18.

    Lorenzo C.A., Concheiro A., Molecularly imprinted polymers for drug delivery, Journal of Chromatography B, 801 (2004) 231–245.

    Article  Google Scholar 

  19. 19.

    Stringer R.C., Gangopadhyay S., Grant S.A., Comparison of molecular imprinted particles prepared using precipitation polymerization in water and chloroform for fluorescent detection of nitroaromatics, Analytical Chimica Acta, 703 (2011) 239–244.

    CAS  Article  Google Scholar 

  20. 20.

    Vasapollo G., Del Sol R., Mergola L., Lazzoi M.R., Scardino A., Scorrano S., Mele G., Molecularly imprinted polymers: present and future prospective, International Journal of Molecular Science, 12 (2011) 5908–5945.

    CAS  Article  Google Scholar 

  21. 21.

    Hiratani H., Lorenzo C.A., The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems, Biomaterials, 25 (2004) 1105–1113.

    CAS  Article  Google Scholar 

  22. 22.

    Sato S., Kitagawa S., Nakajima M., Shimada K., Honda A., Miyazaki H., Assessment of tear concentrations on therapeutic drug monitoring, Pharmaceutical Research, 18 4 (2001) 500–509.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Bates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bates, J.S., Whitson, L.R., Albertson, K.M. et al. Molecular Imprinted Hydrogels in Drug Delivery Applications. MRS Online Proceedings Library 1797, 1 (2015). https://doi.org/10.1557/opl.2015.455

Download citation