Theoretical and experimental investigation of the recombination reduction at surface and grain boundaries in Cu(In,Ga)Se2 solar cells by valence band control

Abstract

We carried out theoretical calculation for Cu(In,Ga)Se2 (CIGS) solar cells with energy bandgap of 1.4 eV assuming formation of a Cu-poor layer on the surface of CIGS films. This calculation result revealed that formation of a thinner Cu-poor layer such as a few nanometers leads to improvement of the solar cells performance. This is because interfacial recombination was suppressed due to repelling holes from the interface by valence band offset (ΔEV). Next, we investigated composition distribution in the cross section of CIGS solar cells with Ga contents of 30% and 70% by transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). It was revealed that the Cu-poor layer was formed on the surface and at the grain boundary (GB) in the case of conversion efficiency (η) of 17.3%, although it was not formed in the case of lower η of 13.8% for a Ga content of 30%. These results indicate that formation of the Cu-poor layer contributed to improvement of cell performance by suppression of carrier recombination. Moreover, it was also confirmed that although the Cu-poor layer was observed on the surface, it was not observed at the GB in the case of CIGS solar cells with a Ga content of 70% which had η of 12.7%. It is thought that the effect of repelling holes by ΔEV is not obtained at the GB and the solar cell performance in the Ga content of 70% is lower than that in the Ga content of 30%. Thus, we suggest importance of the Cu-poor layer at the GB for high efficiency of CIGS solar cells with high Ga contents.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Powalla, P. Jackson, D. Hariskos, S. Paetel, W. Witte, R. Würz, E. Lotter, R. Menner, and W. Wischemann, presented at EU PVSEC29, 2014.

  2. 2.

    A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Nat. Mater 12, 1107(2013).

    Article  Google Scholar 

  3. 3.

    M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-voigt, and W. Mannstadt, Prog. Photovoltaics Res. Appl 20, 843 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Hirai, Y. Hidaka, Y. Kurokawa, and A. Yamada, Jpn. J. Appl. Phys 51, 10NC03 (2012).

    Article  Google Scholar 

  6. 6.

    J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, Appl. Phys. Lett 80, 4540 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, J. Appl. Phys 73, 2902 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    D. Schmid, M. Ruckh, and H.W. Schock, Sol. Energy Mater. Sol. Cells 41, 281 (1996).

    Article  Google Scholar 

  9. 9.

    M. J. Hetzer, Y. M. Strzhemechny, M. Gao, M. A. Contreras, A. Zunger, and L. J. Brillson, Appl. Phys. Lett 86, 162105 (2005).

    Article  Google Scholar 

  10. 10.

    T. Negami, N. Kohara, M. Nishitani, T. Wada, and T. Hirao, Appl. Phys. Lett 67, 825 (1995).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Hirai, Y. Kurokawa, and A. Yamada, Jpn. J. Appl. Phys 53, 012301 (2014).

    Article  Google Scholar 

  12. 12.

    T. Nishimura, Y. Hirai, Y. Kurokawa, and A. Yamada, Jpn. J. Appl. Phys (2015) (to be published).

  13. 13.

    Y. Liu, Y. Sun, and A. Rockett, Sol. Energy Mater. Sol. Cells 98, 124 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    D. Azulay, O. Millo, I. Baiberg, H.W. Schock, I. V. Fisher, and D. Cahen, Sol. Energy Mater. Sol. Cells 91, 85 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    K. Taretto, U. Rau, and J. H. Werner, Thin Solid Films 480, 8 (2005).

    Article  Google Scholar 

  16. 16.

    C. Persson and A. Zunger, Appl. Phys. Lett 87, 211904 (2005).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takahito Nishimura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishimura, T., Hirai, Y., Kurokawa, Y. et al. Theoretical and experimental investigation of the recombination reduction at surface and grain boundaries in Cu(In,Ga)Se2 solar cells by valence band control. MRS Online Proceedings Library 1771, 125–131 (2015). https://doi.org/10.1557/opl.2015.387

Download citation