Control of the Length and Density of Carbon Nanotubes Grown on Carbon Fiber for Composites Reinforcement

Abstract

Aligned multi-walled carbon nanotubes were grown on carbon fiber surface in order to provide a way to tailor the thermal, electrical and mechanical properties of the fiber-resin interface of a polymer composite. As the deposition temperature of the nanotubes is very high, an elevated exposure time can lead to degradation of the carbon fiber. To overcome this obstacle we have developed a deposition technique where the fiber is exposed to an atmosphere of growth for just one minute, and different concentrations of precursor solution were used.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Qian, E. S. Greenhalgh, M. S. P. Shaffer and A. Bismarck. J. Mater. Chem. 20, 4751(2010).

    CAS  Article  Google Scholar 

  2. 2.

    A. Baker; S. Dutton; D. Kelly, Composite Materials for Aircraft Structures, 2nd ed.; edited by B. C. Hoskin and A. A. Baker (American Institute of Aeronautics and Astronautics: Reston}, 2004).

  3. 3.

    E.J. Garcia, B. L. Wardle and A. John Hart, Composites: Part A 39, 1065 (2008).

    Article  Google Scholar 

  4. 4.

    N. Yamamoto, A. John Hart, E. J. Garcia, S. S. Wicks, {etet al.}, Carbon 47, 551(2009).

    CAS  Article  Google Scholar 

  5. 5.

    S.S. Wicks, R. G Villoria and B.L. Wardle, Comp. Sci.. and Technol.70, 20 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    T. Tsuda, T. Ogasawara, S.-Y. Moon {etet al.}, Composites: Part A 65, 1(2014).

    CAS  Article  Google Scholar 

  7. 7.

    E. T. Thostenson; Z. Ren and T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    P. Guo; X. Chen, X. Gao, H. Song and H. Shen, Compos. Sci. Technol. 67, 3331(2007).

    CAS  Article  Google Scholar 

  9. 9.

    E.J. Garcia, B. L. Wardle and A. John Hart and N., Compos. Sci.. and Technol. 68, 2034 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler and K. Schulte, Compos. Sci. Technol. 64, 2363(2004).

    CAS  Article  Google Scholar 

  11. 11.

    J. Qiu, C. Zhang, B. Wang and R. Liang, Nanotechnology 18, 5708 (2007).

    Google Scholar 

  12. 12.

    S. A. Steiner, R. Li, and B. L. Wardle, Appl. Mater. Interfaces 5, 4892 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    H. Qian, A. Bismarck, E. S. Greenhalgh, G. Kalinka and M. S. P. Shaffer, Chem. Mater.20, 1862 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    R. J. Sager, P. J. Klein; D. C. Lagoudas, Q. Zhang, J. Liu, L. Dai and J. W. Baur, Compos. Sci. Technol. 69, 898 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    V. G. Resende, E. F. Antunes, A. O. Lobo, D. A. L. Oliveira, V. J. Trava-Airoldi and E. J. Corat, Carbon 48, 3655 (2010).

    Article  Google Scholar 

  16. 16.

    E. F. Antunes, A. O. Lobo, E. J. Corat, V. J. Trava-Airoldi, Carbon 45, 913 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from National Council of Scientific and Technological Development of Brazil (CNPq).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lays D. R. Cardoso.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cardoso, L.D.R., Trava-Airoldi, V.J., Silva, F.S. et al. Control of the Length and Density of Carbon Nanotubes Grown on Carbon Fiber for Composites Reinforcement. MRS Online Proceedings Library 1752, 77–82 (2015). https://doi.org/10.1557/opl.2015.211

Download citation