Tuning Mechanical Properties of Chondroitin Sulfate-Based Hydrogels Using the Double-Network Strategy

Abstract

The double-network (DN) hydrogel concept developed by J.P. Gong and Y. Osada builds upon interpenetrating networks by combining brittle and ductile components to have significantly enhanced fracture properties. The generality of the DN effect was tested by creating biopolymer-based hydrogels of methacrylated chondroitin sulfate (MCS) and polyacrylamide (PAAm) and extended upon creating DNs of MCS and poly(N,N dimethyl acrylamide) (PDMAAm), verifying that DNs were not limited to the original combination of poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS)/polyacrylamide (PAAm). Further, the mechanical properties were varied by changing the monomer concentrations, cross-linker concentrations and the addition of cross-linking groups through copolymerizations of MCS and poly(ethylene glycol) diacrylate (PEGDA). Overall, this work demonstrates that a broad range of mechanical properties achievable through DN effect under tension and compression, generally independent of the swelling degree, which is fundamentally different behavior than possible with single networks.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. P. Gong, Soft Matter 6, 2583–2590 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Q. Li, D. Wang and J. H. Elisseeff, Macromolecules 36, 2556–2562 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    V. C. Mow, A. Ratcliffe and A. Robin Poole, Biomaterials 13, 67–97 (1992).

    CAS  Article  Google Scholar 

  4. 4.

    Q. Li, C. G. Williams, D. N. Sun, J. Wang, K. Leong and J. H. Elisseeff, Journal of Biomedical Materials Research 68, 28–33 (2004).

    Article  Google Scholar 

  5. 5.

    T. C. Suekama, J. Hu, T. Kurokawa, J. P. Gong and S. H. Gehrke, ACS Macro Letters 2, 137–140 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    G. Ingavle, N. Dormer, S. Gehrke and M. Detamore, Journal of Materials Science: Materials in Medicine 23, 157–170 (2012).

    CAS  Google Scholar 

  7. 7.

    N. J. Steinmetz and S. J. Bryant, Biotechnology and Bioengineering, 109, 2671–2682 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    T. C. Suekama, J. Hu, T. Kurokawa, J. P. Gong and S. H. Gehrke, Macromolecular Symposia 329, 9–18 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    A. Khanlari, M. S. Detamore and S. H. Gehrke, Macromolecules, 46, 9609–9617 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    S. Liang, Z. L. Wu, J. Hu, T. Kurokawa, Q. M. Yu and J. P. Gong, Macromolecules 44, 3016–3020 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Q. M. Yu, Y. Tanaka, H. Furukawa, T. Kurokawa and J. P. Gong, Macromolecules 42, 3852–3855 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    J. Hu, K. Hiwatashi, T. Kurokawa, S. M. Liang, Z. L. Wu and J. P. Gong, Macromolecules 44, 7775–7781 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    N. Peppas, Hydrogels in Medicine and Pharmacy, CRC Press Boca Raton, FL, CRC Press Boca Raton, FL, (1988).

    Google Scholar 

  14. 14.

    S. H. Gehrke, in Transport in Pharmaceutical Sciences, eds. G. L. Amidon, P. I. Lee and E. M. Topp, Marcel Dekker, New York, NY, 2000, pp. 473–546.

    Google Scholar 

  15. 15.

    T. C. Suekama, D. Rennerfeldt, A. Khanlari and S. H. Gehrke, Manuscript in preparation

  16. 16.

    P. Calvert, Advanced Materials 21, 743–756 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Y. H. Na, Y. Tanaka, Y. Kawauchi, H. Furukawa, T. Sumiyoshi, J. P. Gong and Y. Osada, Macromolecules 39, 4641–4645 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    M. A. Haque, T. Kurokawa and J. P. Gong, Polymer 53, 1805–1822 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Kawauchi, Y. Tanaka, H. Furukawa, T. Kurokawa, T. Nakajima, Y. Osada and J. P. Gong, J. Phys. Conf. Ser., 184, 012016 (2009).

    Article  Google Scholar 

  20. 20.

    G. A. Abraham, A. A. de Queiroz and J. S. Román, Biomaterials 22, 1971–1985 (2001).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suekama, T.C., Khanlari, A. & Gehrke, S.H. Tuning Mechanical Properties of Chondroitin Sulfate-Based Hydrogels Using the Double-Network Strategy. MRS Online Proceedings Library 1622, 79–84 (2013). https://doi.org/10.1557/opl.2014.72

Download citation