The Potential of Low Frequency EPR Spectroscopy in Studying Pottery Artifacts and Pigments.


Non-destructive investigation, chemically fingerprinting, and authentication of ceramic cultural artifacts is a challenging analytical problem. Electron paramagnetic resonance (EPR) spectroscopy is capable of distinguishing between clays based on the paramagnetic metals present, and firing temperature (TF) based on the complexes of these metals formed at different TF values. Unfortunately, the 9 GHz frequency of conventional X-band EPR restricts sample size to a few mm and limits its applicability to small fragments. Low frequency EPR (LFEPR) is based on an EPR spectrometer operating at a few hundred MHz. LFEPR can utilize larger samples on the order of a few cm, but has a lower sensitivity due to the smaller Boltzmann ratio. Additionally, LFEPR may not be capable of detecting a spectral transition if the LFEPR operating frequency is less then the zero-field splitting of the paramagnetic metal complex. We utilized an LFEPR operating at 300 MHz which scans the applied magnetic field between the local Earth’s magnetic field and 26 mT to determine the feasibility of detecting EPR signals from clays, pigments, and glazes. Various clay samples were studied at 100 < TF < 1200 °C. Spectral differences were seen as a function of both clay type and TF. Differences in the LFEPR spectra of Han, Egyptian, and Ultramarine blue support the ability to distinguish among pigments. Paramagnetic impurities in glass may allow distinction between glaze spectra. We have also explored the utility of LFESR by the use of a radio frequency surface coil rather than an enclosed resonator. Although the active volume of the surface coil is ∼1 cm3, objects as large as 20 cm in diameter might be easily characterized with our spectrometer.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    A.N. Shugar, J. L. Mass (eds.), Handheld XRF for Art and Archaeology (Studies in Archaeological Sciences), Leuven University Press, 2013.

  2. 2.

    P. Vandenabeele, J. Tate, L. Moens, Non-destructive Analysis of Museum Objects by Fibre-optic Raman Spectroscopy, Anal. Bioanal. Chem., 387, 813 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    D. Capitani, V. Di Tullio, N. Proietti, Nuclear Magnetic Resonance to Characterize and Monitor Cultural Heritage, Progress Nucl. Magn. Reson., 64, 29 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    G.V. Robins, N. J. Seeley, D. A. C. McNeil and M. C. R. Symons, Identification of Ancient Heat Treatment in Flint Artefacts by ESR Spectroscopy, Nature, 276, 703 (1978).

    Article  Google Scholar 

  5. 5.

    D. Cordischi, D. Monna and A. L. Segre, ESR Analysis of Marble Samples from Mediterranean Quarries of Archaeological Interest, Archaeometry, 25, 68 (1983).

    CAS  Article  Google Scholar 

  6. 6.

    D. Attanasio, D. Capitani, C. Federici, A. L. Segre, Electron Spin Resonance Study of Paper Samples Dating from the Fifteenth to the Eighteenth Century, Archaeometry, 37, 377 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    T. Warashina, T. Higashimura, Y. Maeda, Determinationof the Firing Temperature of Ancient Pottery by Means of ESR Spectroscopy, British Museum Occasional Papers, 19, 117 (1981).

    CAS  Google Scholar 

  8. 8.

    Y. Bensimon, B. Deroide, S. Clavel, J.V. Zanchetta, Electron Spin Resonance and Dilatometric Studies of Ancient Ceramics Applied to Determination of Firing Temperature, Jpn. J. Appl. Phys. 37, 4367 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    F. Presciutti, D. Capitani, A. Sgamellotti, B.G. Brunetti, F. Costantino, S. Viel, A. Segre, Electron Paramagnetic Resonance, Scanning Electron Microscopy with Energy Dispersion X-ray Spectrometry, X-ray Powder Diffraction, and NMR Characterization of Iron-Rich Fired Clays, J. Phys. Chem. B, 109, 22147(2005).

    CAS  Article  Google Scholar 

  10. 10.

    J.P. Hornak, M. Spacher, R.G. Bryant, A Modular Low Frequency ESR Spectrometer, Meas. Sci. Technol. 2, 520 (1991).

    CAS  Article  Google Scholar 

  11. 11.

    G.A. Rinard, R.W. Quine, G.R. Eaton, S.S. Eaton, E.D. Barth, C.A. Pelizzari, H.J. Halpern, Magnet and Gradient Coil System for Low-Field EPR Imaging, Concepts Magn. Reson. (Magnetic Resonance Engineering), 15, 51(2002).

    Article  Google Scholar 

  12. 12.

    R.W. Quine, G.A. Rinard, S.S. Eaton, G.R. Eaton, A Pulsed and Continuous Wave 250 MHz Electron Paramagnetic Resonance Spectrometer, Concepts Magn. Reson. 15, 84(2002).

    Article  Google Scholar 

  13. 13.

    H. Nishikawa, H. Fuji, L.J. Berliner, Helices and Surface Coils for Low-Field in vivo ESR and EPR Imaging Applications. J. Magn. Reson. 62, 79 (1969).

    Google Scholar 

  14. 14.

    A. Sotgiu, H Fuji, G Gualtieri, Toroidal Surface Coil for Topical ESR Spectroscopy. J. Phys. E: Sci. Instrum. 20, 1428 (1987).

    Article  Google Scholar 

  15. 15.

    M.R. Bendall, Surface Coil Technology. In Magnetic Resonance Imaging, ed. by C.L. Partain, R.R. Price, J.A. Patton, M.V. Kulkarni, A.E. James, Saunders, Philadelphia, 1988.

    Google Scholar 

  16. 16.

    M. Ono, K. Ito, N. Kawamura, K C Hsieh, H Hirata, N Tsuchihashi, H. Kamada, A Surface-Coil-type Resonator for in vivo ESR Measurements. J. Magn. Reson., 104B, 180 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Lin, H. Yokoyama, S.-I. Ishida, N. Tsuchihashi, T. Ogata, In vivo Electron Spin Resonance Analysis of Nitroxide Radicals Injected into a Rat by a Flexible Surface-Coil-Type Resonator as an Endoscope- or a Stethoscope-Like Device. MAGMA 5, 99 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    M. Tada, H. Yokoyama, Y. Toyoda, H. Ohya, T. Ito, T. Ogata, Surface-Coil-Type Resonators for in Vivo Temporal ESR Measurements in Different Organs of Nitroxide-Treated Rats. Appl. Magn. Reson. 18, 575 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    H. Yokoyama, M. Tada, T. Sato, H. Ohya, T. Akatsuka, Modified Surface-Coil-Type Resonators for EPR: Measurements of a Thin Membrane Like Sample. Appl Magn Reson 24, 233 (2003).

    Article  Google Scholar 

  20. 20.

    H. Berke, The Invention of Blue and Purple Pigments in Ancient Times, Chem Soc Rev 36, 15 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    G. Pozza, D. Ajo, G. Chiari, F. De Zuane, M. Favaro, Photoluminescence of the Inorganic Pigments Egyptian Blue, Han Blue, and Han Purple, J. Cult. Herit., 1, 393 (2000).

    Article  Google Scholar 

  22. 22.

    P. Mirti, L. Appolonia, A. Casoli, Spectrochemical and Structural Studies on a Roman Sample of Egyptian Blue, Spectrochimica Acta (A), 51A, 437 (1995).

    Article  Google Scholar 

  23. 23.

    R.J.H. Clark, M.L. Curri, C. Laganara, Raman Microscopy: the Identification of Lapis Lazuli on Medieval Pottery Fragments from the South of Italy, Spectrochim. Acta (A) 53, 597 (1997).

    Article  Google Scholar 

  24. 24.

    P. Colomban, Lapis Lazuli an Unexpected Blue Pigment in Iranian Lajvardina Ceramics, J. Raman Spectr., 34, 420 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    N. Gobeltz, A. Demortier, J.P. Lelieur, C. Duhayon, Correlation between EPR, Raman, and Colorimetric Characteristics of the Blue Ultramarine Pigments. J. Chem. Soc., Faraday Trans., 94, 677 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    J.E. Wertz, J.R. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications. Chapman and Hall, NY, 1972.

  27. 27.

    J.P. Hornak, J. Szumowski, R.G. Bryant, Elementary Single Turn Solenoids Used as the Transmitter and Receiver in Magnetic Resonance Imaging, Magn. Res. Imag. 5, 233 (1987).

    CAS  Article  Google Scholar 

  28. 28.

    T. Munsat, W. M. Hooke, S. P. Bozeman, S. Washburnd, Two New Planar Coil Designs for a High Pressure Radio Frequency Plasma Source. Appl. Phys. Lett. 66, 2180 (1995).

    CAS  Article  Google Scholar 

  29. 29.

    E. Szczepaniak, J.P. Hornak, ESR Imaging Based on the Modulation Field Phase, J. Magn. Reson. 104A, 315 (1993).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to William J. Ryan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryan, W.J., Zumbulyadis, N. & Hornak, J.P. The Potential of Low Frequency EPR Spectroscopy in Studying Pottery Artifacts and Pigments.. MRS Online Proceedings Library 1656, 309–317 (2014).

Download citation