Effect of the Heat Input in the Mechanical and Metallurgical Properties of Welds on AHSS Transformed Induced Plasticity Steel Joined with GMAW Processes in the Automotive Industry

Abstract

The effect of the heat input on the mechanical and metallurgical properties of the welds has been investigated in the heat affected zone (HAZ) of welds joined with gas metal arc welding (GMAW), using normal production welding parameters. The thermal effect in the HAZ of the welds is important for the optimization of the welding parameters used when weld transformed induced plasticity (TRIP) steels, because this will have a great influence in the mechanical and metallurgical properties of the weld. In this work 3 samples was welded a high, average and low heat input, with the variation of welding parameters to obtain different thermal affectation to investigate the variations in different parts of weld joint: weld, HAZ and base metal, due the heat applied for the welding process used. Mechanical properties were evaluated by tension test, microhardness and fatigue testing and metallurgical evaluation with optical metallograpy, scanning electron microscopy (SEM), fractograpy and X-Ray diffraction (XRD).The results obtained shows that the mechanical properties of the tension test decrease when the heat input increase and the microhardness exhibit a softening zone in the HAZ with lower hardness and the fatigue life were similar for all heat inputs for the high stress levels, but only in low stress there is a difference. For metallurgical properties the metallographic evaluation shows ferrite, bainite - martensite and retained austenite, and the fractography analysis exhibit a ductile fracture in all cases and the content in volume fraction of retained austenite increases in the HAZ of welds when increasing heat input in to the base metal due the thermal effect.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. Kapustka, C. Conrardy, S. Babu, C. Albright, American Welding Society and the Welding Research Council, 135–148 (2008).

  2. 2.

    Z. Mei, L. Li, R. Fu, J. Zhang, Z. Wan, Journal of Iron and Steel Research International, 15(5), 61–65 (2008).

    Article  Google Scholar 

  3. 3.

    Z. LI, L. Hui-sheng, F. Shi-rong, Proceedings of Sine Swedish Structural Materials Symposium (2007).

  4. 4.

    M. Militzer, A synchrotron look at steel. Science 298, 975–976, (2002).

    CAS  Article  Google Scholar 

  5. 5.

    P. Jacques, Curr. Opin. Solid State Mater. Sci. 8, 259–265, (2004).

    CAS  Article  Google Scholar 

  6. 6.

    A. Nagasaka, “Press formability of YAG laser welded TRIP steel sheets”, Acta Metall. Sin. 15, 21–25, (2002).

    CAS  Google Scholar 

  7. 7.

    T.K., Han, S.S. Park, Kim, K.H. Kang, C.Y,Woo, I.S. Lee, ISIJ Inter. 45, 60–65, (2005).

    CAS  Article  Google Scholar 

  8. 8.

    S. Song, K. Sugimoto, S. Kandaka, A. Futamura, M. Kobayashi, S. Masuda, Mater Sci. Res. Int. 9(3) 223–229, (2003).

    CAS  Google Scholar 

  9. 9.

    K. Sugimoto, S. Song, K. Inoue, M. Kobayashi, S. Masuda, Japan Soc Mater Sci 657–64, (2001).

  10. 10.

    S. Yasuki, K. Sugimoto, M. Kobayashi, S. Hashimoto, “Low cycle fatigue- hardening of TRIP-aided dual-phase steels”. Nippon Kinzoku Gakkaishi 54(12), 350–1357, (1990).

    Google Scholar 

  11. 11.

    A. Itami, M. Takahashi, K. Ushioda, Proceedings of the International Symposium on Low-Carbon Steels of the 90’, Pittsburgh, (1994), 245.

  12. 12.

    N. Kaputska, C. Conrardy, S. Babu,C. Albrigth, Welding Journal, American Welding Society and the Welding Research Council, 87, 135–148; (2008).

    Google Scholar 

  13. 13.

    L. Zhaoa, M. Wibowoa, M. Hermansb, S. van Bohemenb, J. Sietsmab, Journal of Materials Processing Technology, 5286–5291, (2009).

  14. 14.

    L.T. Robertson, T.B. Hilditch , P. Hodgson, International Journal of Fatigue 30, 587–594, (2008).

    CAS  Article  Google Scholar 

  15. 15.

    J. Chen, K. Sand, M.S. Xia, C. Ophus, R. Mohjammadi, M.L. Kuntz, Y. Zhou, The Minerals, Metals & Materials Society, 39, 593–603, (2008)

    Google Scholar 

  16. 16.

    S. Papaefthymiou, U. Prahl, V. Bleck, S. Zwaag, Int. J. Mater. 97, 1723–1731, (2006).

    CAS  Google Scholar 

  17. 17.

    X. Cheng, R. Petrov, L. Zhao, M. Janssen, Eng. Fract. Mech. 75, 739–749, (2008).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Victor Lopez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lopez, V., Reyes, A. & Zambrano, P. Effect of the Heat Input in the Mechanical and Metallurgical Properties of Welds on AHSS Transformed Induced Plasticity Steel Joined with GMAW Processes in the Automotive Industry. MRS Online Proceedings Library 1616, 9 (2014). https://doi.org/10.1557/opl.2014.238

Download citation