Low Temperature Annealing of Inkjet-Printed Silicon Thin-Films for Photovoltaic and Thermoelectric Devices


Silicon nanoparticles-based inks were investigated in respect of their suitability for photovoltaic and thermoelectric applications. Nanoparticles with a diameter ranging between 20 to 150 nm were functionalized in order to avoid oxidation as well as having a good stability in suspension. After inkjet-printing and drying, they were annealed up to 1000 °C under nitrogen atmosphere by both rapid thermal and microwave annealing. The influence of the annealing treatment on the structural, electrical, optical and thermal properties was investigated by Raman, SEM, electrical and optical measurements. SEM and Raman demonstrate evolution of the microstructure at temperature as low as 600 °C. Optical, electrical and thermal properties depend strongly on the annealing temperature and tend to exhibit a modification of physical properties above 800 °C when the smallest nanoparticles begin to melt. The annealing method has been identified to be of primary importance on the layer microstructure and its thermal behavior.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. Shimoda, et al., Nature 440, 783–786 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    T. Masuda, N. Sotani, H. Hamada, Y. Matsuki, T. Shimoda, Appl. Phys. Lett. 100, 253908 (2012). 10.1063/1.4730614

    Article  Google Scholar 

  3. 3.

    E. Drahi, S. Blayac, P. Benaben, Mater. Res. Soc. Symp. Proc. 1321 (2011).

    Google Scholar 

  4. 4.

    R.W. Lechner, PhD. Thesis, Technische Universität München, 2009.

  5. 5.

    E. Drahi, PhD. Thesis, Ecole Nationale Supérieure des Mines de Saint Etienne, 2013.

  6. 6.

    T.C. Kho, L.E. Black, K.R. McIntosh, in 24th European PVSEC, Hamburg, Germany, 2009.

    Google Scholar 

  7. 7.

    D. Żymełka, S. Saunier, J. Molimard, D. Goeuriot, Adv. Eng. Mater. 13, 901–905 (2011). 10.1002/adem.201000354

    Article  Google Scholar 

  8. 8.

    I. De Wolf, J. Jiménez, J.-P. Landesman, C. Frigeri, P. Braun, E. Da Silva, E. Calvet, Raman and Luminescence Spectroscopy for Microelectronics, 1998.

  9. 9.

    M. Kawata, T. Katoda, J. Appl. Phys. 75, 7456–7459 (1994).

    CAS  Article  Google Scholar 

  10. 10.

    J.R. Greer, R.A. Street, J. Appl. Phys. 101, 103529 (2007). 10.1063/1.2735404

    Article  Google Scholar 

  11. 11.

    R. Tsu, J.G. Hernandez, Appl. Phys. Lett. 41, 1016–1018 (1982).

    CAS  Article  Google Scholar 

  12. 12.

    M. Balkanski, R. f. Wallis, E. Haro, Phys. Rev. B 28, 1928–1934 (1983).

    CAS  Article  Google Scholar 

  13. 13.

    M. Nonnenmacher, H.K. Wickramasinghe, Appl. Phys. Lett. 61, 168–170 (1992).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Etienne Drahi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Drahi, E., Gupta, A., Blayac, S. et al. Low Temperature Annealing of Inkjet-Printed Silicon Thin-Films for Photovoltaic and Thermoelectric Devices. MRS Online Proceedings Library 1536, 201–206 (2013). https://doi.org/10.1557/opl.2013.852

Download citation