Radial Growth Model for Conical Nanobridge in Resistive Switching Memory Devices

Abstract

A phenomenological model has been proposed for the radial growth of the copper or silver nanobridge in the conductive bridge random access memory devices. In this model, the growth rate of the bridge is proportional to the local ion flux based on the hopping mechanism. Due to the differences of the local electric field, the growth rate is different along a conical shape nanobridge. The model accounts for the growth rate difference by introducing a geometrical form factor. Based on the model, the top and bottom radii are predicted for truncated conical copper nanobridge. The model is validated with data obtained on Cu/TaOx/Pt resistive devices.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    W. Lu, D. S. Jeong, M. Kozicki, and R. Waser, MRS Bulletin 37, 124 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    T. Liu, Y. Kang, M. Verma, and M. K. Orlowski, IEEE Electron Device Lett. 33, 429 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    T. Liu, M. Verma, Y. Kang, and M. K. Orlowski, ECS Solid State Lett. 1, Q11 (2012).

    Article  Google Scholar 

  4. 4.

    T. Liu, M. Verma, Y. Kang, and M. K. Orlowski, IEEE Electron Device Lett. 34, 108 (2013).

    Article  Google Scholar 

  5. 5.

    S. Menzel, U. Boettger, and R. Waser, J. Appl. Phys. 111, 014501 (2012).

    Article  Google Scholar 

  6. 6.

    S. Z. Rahaman, S. Maikap, W. S. Chen, H. Y. Lee, F. T. Chen, T. C. Tien, and M. J. Tsai, J. Appl. Phys. 111, 063710 (2012).

    Article  Google Scholar 

  7. 7.

    G. Palma, E. Vianello, C. Cagli, G. Molas, M. Reyboz, P. Blaise, B. De Salvo, F. Longnos, and F. Dahmani, Int. Memory Workshop, 2012, pp. 178–181.

  8. 8.

    N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, 2nd ed. (Dover Publications, New York, 1964) p. 42.

  9. 9.

    S. Yu and H.-S. P. Wong, IEEE Trans. Electron Devices 58, 1352 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, IEEE Trans. Electron Devices 56, 1040 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    D. Ielmini, IEEE Trans. Electron Devices, 58, 4309 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, IEEE Trans. Electron Devices, 56, 193 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    M. M. Fejer, S. Rowan, G. Cagnoli, D. R. M. Crooks, A. Gretarsson, G. M. Harry, J. Hough, S. D. Penn, P. H. Sneddon, and S. P. Vyatchanin, Phys. Rev. D, 70, 082003 (2004).

    Article  Google Scholar 

  14. 14.

    J. R. Jameson, N. Gilbert, F. Koushan, J. Saenz, J. Wang, S. Hollmer, M. Kozicki, and N. Derhacobian, IEEE Electron Device Lett. 33, 257 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    J. J. T. Wagenaar, M. Morales-Masis, and J. M. van Ruitenbeek, J. Appl. Phys., 111, 014302 (2012).

    Article  Google Scholar 

  16. 16.

    L. Goux, K. Sankaran, G. Kar, N. Jossart, K. Opsomer, R. Degraeve, G. Pourtois, G.-M. Rignanese, C. Detavernier, C. Clima, Y.-Y. Chen, A. Fantini, B. Govoreanu, D. J. Wouters, M. Jurczak, L. Altimime, and J. A. Kittl, Symp. VLSI Technol., 2012, pp. 69–70.

  17. 17.

    T. Liu, Y. Kang, S. El-Helw, T. Potnis, and M. K. Orlowski, submitted to Jpn. J. Appl. Phys.

  18. 18.

    Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, ACS Nano, 4, 6162 (2010).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tong Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, T., Kang, Y., El-Helw, S. et al. Radial Growth Model for Conical Nanobridge in Resistive Switching Memory Devices. MRS Online Proceedings Library 1562, 1 (2013). https://doi.org/10.1557/opl.2013.826

Download citation