Development of AlAsSb as a barrier material for ultra-thin-channel InGaAs nMOSFETs


We investigated AlAs0.56Sb0.44 epitaxial layers lattice-matched to InP grown by molecular beam epitaxy (MBE). Silicon (Si) and tellurium (Te) were studied as n-type dopants in AlAs0.56Sb0.44 material. Similar to most Sb-based materials, AlAs0.56Sb0.44 demonstrates a maximum active carrier concentration around low-1018 cm-3 when using Te as a dopant. We propose the use of a heavily Si-doped InAlAs layer embedded in the AlAsSb barrier as a modulation-doped layer. The In0.53Ga0.47As/AlAs0.56Sb0.44 double heterostructures with a 10 nm InGaAs well show an electron mobility of about 9400 cm2/V・s at 295 K and 32000 cm2/V・s at 46 K. A thinner 5 nm InGaAs well has an electron mobility of about 4300 cm2/V・s at 295 K. This study demonstrates that AlAs0.56Sb0.44 is a promising barrier material for highly scaled InGaAs MOSFETs and HEMTs.

This is a preview of subscription content, access via your institution.


  1. 1.

    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    W. Ted Masselink, Appl. Phys. Lett. 67, 801 (1995).

    Article  Google Scholar 

  3. 3.

    Y. Nakata, Y. Sugiyama, T. Inata, O. Ueda, S. Sasa, S. Muto, and T. Fujii, Mater. Res. Soc. Symp. Proc. 198, 289 (1990).

    CAS  Article  Google Scholar 

  4. 4.

    N. Georgiev, and T. Mozume, J. Appl. Phys. 89, 1064 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    K. Kobayashi, N. Kamata, and T. Suzuki, Mater. Res. Soc. Symp. Proc. 56, 61 (1986).

    CAS  Article  Google Scholar 

  6. 6.

    B. R. Bennett, W. J. Moore, M. J. Yang, and B. V. Shanabrook, J. Appl. Phys. 87, 7876 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    C. R. Bolognesi, J. E. Bryce, and D. H. Chow, Appl. Phys. Lett. 69, 3531 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    B. R. Bennett, M. J. Yang, B. V. Shanabrook, J. B. Boos, and D. Park, Appl. Phys. Lett. 72, 1193 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    V. K. Arora, and A. Naeem, Phys. Rev. B 31, 3887 (1985).

    CAS  Article  Google Scholar 

  10. 10.

    P. J. Price, Ann. Phys. 133, 217 (1981).

    CAS  Article  Google Scholar 

  11. 11.

    B. K. Ridley, J. Phys. C 15, 5899 (1982).

    CAS  Article  Google Scholar 

  12. 12.

    A. Gold, Phys. Rev. B 35, 723 (1987).

    CAS  Article  Google Scholar 

  13. 13.

    D. Chattopadyay, Phys. Rev. B 31, 1145 (1985).

    Article  Google Scholar 

  14. 14.

    N. Ikarashi, M. Tanaka, H. Sakaki, and K. Ishida, Appl. Phys. Lett. 60, 1360 (1992).

    CAS  Article  Google Scholar 

  15. 15.

    P. M. Petroff, R. C. Miller, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 44, 217 (1984).

    CAS  Article  Google Scholar 

  16. 16.

    C. R. Bolognesi, H. Kroemer, and J. H. English, Appl. Phys. Lett. 61, 213 (1992).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Cheng-Ying Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, CY., Law, J.J.M., Lu, H. et al. Development of AlAsSb as a barrier material for ultra-thin-channel InGaAs nMOSFETs. MRS Online Proceedings Library 1561, 1 (2013).

Download citation