Direct Synthesis of Bimetallic Nanoalloys from Corresponding Bulk Alloys

Abstract

We report a transformative, all inorganic method-based synthesis of supported bimetallic alloy nanoparticles. We use Pd3Ag as a proof of concept. The method involves breaking down bulk Pd3Ag alloy into the nanoparticles in liquid lithium, converting metallic Li to LiOH, transferring Pd3Ag nanoparticles/LiOH mixture onto non-water soluble supports, followed by leaching off the LiOH with water under ambient conditions. The size of the resulting Pd3Ag nanoparticles was found narrowly distributed around 2.3 nm characterized by transmission electron microscope (TEM). In addition, studies by X-ray diffraction (XRD) showed that the resulting Pd3Ag nanoparticles inherited similar structure as the starting bulk Pd3Ag.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Schmid ; A. Lehnert ; J.-O. Malm ; J.-O Bovin., Angew. Chem. Int. Ed. 1991, 30, (7), 874–876.

    Article  Google Scholar 

  2. 2.

    R. Ferrando ; J. Jellinek ; R. L Johnston., Chem. Rev. 2008, 108, 846–910.

    Article  CAS  Google Scholar 

  3. 3.

    B. C Gates., Chem. Rev. 1995, 95 511–522.

    CAS  Article  Google Scholar 

  4. 4.

    C. Burda ; X. Chen ; R. Narayanan ; M. A El-Sayed., Chem. Rev. 2005, 105, (4), 1025–1102.

    CAS  Article  Google Scholar 

  5. 5.

    E. A. Sales ; B. Benhamida ; V. Caizergues ; J. P. Lagier ; F. Fievet ; F Bozon-Verduraz., Applied Catalysis a-General 1998, 172, (2), 273–283.

    Article  Google Scholar 

  6. 6.

    Q. Zhang ; J. Li ; X. Liu ; Q Zhu., Applied Catalysis A: General 2000, 197, (2), 221–228.

    CAS  Article  Google Scholar 

  7. 7.

    C. Chen ; M Akashi., Langmuir 1997, 13, 6465–6472.

    CAS  Article  Google Scholar 

  8. 8.

    T. Herricks ; J. Chen ; Y Xia., Nano Lett. 2004, 4, 2367–2371.

    CAS  Article  Google Scholar 

  9. 9.

    P. B Kettler., Org. Proc. Res. Dev. 2003, 7, 342–354.

    CAS  Article  Google Scholar 

  10. 10.

    T. Teranishi ; M. Hosoe ; T. Tanaka ; M Miyake., J. Phys. Chem. B 1999, 103, 3818–3827.

    CAS  Article  Google Scholar 

  11. 11.

    C.-C. Yang ; C.-C. Wan ; Y.-Y Wang. Journal of Colloid and Interface Science 2004, 279, (2), 433–439.

    CAS  Article  Google Scholar 

  12. 12.

    J. Yang ; J. Y. Lee ; C., D. T. ; H. P. Too Langmuir 2003, 19, 10361–10365.

    CAS  Article  Google Scholar 

  13. 13.

    M. T. Reetz ; W Helbig., J. Am. Chem. Soc. 1994, 116, (16), 7401–7402.

    CAS  Article  Google Scholar 

  14. 14.

    J. Lu ; P. C Stair., Langmuir 2010, 26, (21), 16486–16495.

    CAS  Article  Google Scholar 

  15. 15.

    M. Guerrero ; J. Garcı´a-Anton ; M. Tristany ; J. Pons ; J. Ros ; K. Philippot ; P. Lecante ; B Chaudret., Langmuir 2010, 26, (19), 15532–15540.

    CAS  Article  Google Scholar 

  16. 16.

    A. Christensen ; A. V. Ruban ; P. Stoltze ; K. W. Jacobsen ; H. L Skriver.; rskov oslash;, J. K. ; Besenbacher, F. Physical Review B 1997, 56, (10), 5822.

    CAS  Article  Google Scholar 

  17. 17.

    N. Toshima ; T Yonezawa. New Journal of Chemistry 1998, 22, (11), 1179–1201.

    CAS  Article  Google Scholar 

  18. 18.

    J. Phillips ; A. Auroux ; G. Bergeret ; J. Massardier ; A Renouprez. J. Phys. Chem. 1993, 97, (14), 3565–3570.

    CAS  Article  Google Scholar 

  19. 19.

    H. Röder ; R. Schuster ; H. Brune ; K Kern. Physical Review Letters 1993, 71, (13), 2086–2089.

    Article  Google Scholar 

  20. 20.

    F. Coloma ; A. Sepulveda-Escribano ; J. L. G. Fierro ; F Rodriguez-Reinoso. Langmuir 1994, 10, 750–755.

    CAS  Article  Google Scholar 

  21. 21.

    F. Zaragoza-Martı´n ; D. Sopen˜a-Escario ; E. Morallo´n ; C. S.-M de Lecea. Journal of Power Sources 2007, 171, (2), 302–309.

    Article  CAS  Google Scholar 

  22. 22.

    I. Karakaya ; W Thompson. Journal of Phase Equilibria 1988, 9, (3), 237–243.

    Google Scholar 

  23. 23.

    T. S. Ahmadi ; Z. L. Wang ; T. C. Green ; A. Henglein ; M. A El-Sayed. Science 1996, 272, (5270), 1924–1925.

    CAS  Article  Google Scholar 

  24. 24.

    J. Yang ; T. C. Deivaraj ; H. P. Too ; J. Y Lee.J. Phys. Chem. B 2004, 108, 2181–2185.

    CAS  Article  Google Scholar 

  25. 25.

    H. J. Salavagione ; C Sanchis. J. Phys. Chem. C 2007, 111, 12454–12460.

    CAS  Article  Google Scholar 

  26. 26.

    K. Amine ; M. Mizuhata ; K. Oguro ; H Takenaka. J. Chem. Soc., Faraday Trans. 1995, 91, 4451–4458.

    CAS  Article  Google Scholar 

  27. 27.

    T. Fujimoto ; S. Y. Terauchi ; H. Umehara ; I. Kojima ; W Henderson. Chem. Mater. 2001, 13, 1057–1060.

    CAS  Article  Google Scholar 

  28. 28.

    J. M. Solar ; C. A. L. y Leon ; K. Osseo-Asaret ; L. R. Radovic Carbon 1990, 28, 369–375.

    CAS  Article  Google Scholar 

  29. 29.

    C.-K. Lin ; Y.-G. Lin ; T. Wu ; H. M. Barkholtz ; Q. Lin ; H. Wei ; D. L. Brewe ; J. T. Miller ; D.-J. Liu ; Y. Ren ; Y. Ito ; T Xu. Inorg. Chem. 2012, 51, 13281–13288.

    CAS  Article  Google Scholar 

  30. 30.

    C. L. Haertling ; R. J. Hanrahan ; J. R Tesmer. J. Phys. Chem. C 2007, 111, 1716–1724.

    CAS  Article  Google Scholar 

  31. 31.

    A. V. Vertkov ; V. A. Evtikhin ; I. E Lyublinsk. J. Nucl. Mater. 1996, 233-237, 452–455.

    Article  Google Scholar 

  32. 32.

    A. D. Pelton, The Ag−Li (Silver-Lithium) system. J. Phase Equilib. 1986, 7, (3), 223–228-228.

    Google Scholar 

  33. 33.

    J. Sangster ; A. D. Pelton Journal of Phase Equilibria 1992, 13, (1), 63–66-66.

    CAS  Article  Google Scholar 

  34. 34.

    H. Bönnemann ; R. Brinkmann ; S. Kinge ; T. O. Ely ; M Armand. Fuel Cells 2004, 4, (4), 289–296.

    Article  CAS  Google Scholar 

  35. 35.

    X. Zhao ; G. Sun ; L. Jiang ; W. Chen ; S. Tang ; B. Zhou ; Q. Xin Electrochemical and Solid-State Letters 2005, 8, A149–A151.

    CAS  Article  Google Scholar 

  36. 36.

    G. J. Kipouros ; D. R Sadoway., JOM Journal of the Minerals, Metals and Materials Society 1998, 50, (5), 24–26.

    CAS  Article  Google Scholar 

  37. 37.

    C. Lin ; T. Xu ; J. Yu ; Q. Ge ; Z Xiao. J. Phys. Chem. C 2009, 113, (19), 8513–8517.

    CAS  Article  Google Scholar 

  38. 38.

    T. Xu ; C. Lin ; C. Wang ; D. L. Brewe ; Y. Ito ; J Lu. J. Am. Chem. Soc. 2010, 132, 2151–2153.

    CAS  Article  Google Scholar 

  39. 39.

    L. W McKeehan. Physical Review 1922, 20, (5), 424–432.

    CAS  Article  Google Scholar 

  40. 40.

    K. Ignatova ; L. Nikolova ; W Dimov. J. Phys. Chem. B 1997, 101, (35), 6891–6894.

    CAS  Article  Google Scholar 

  41. 41.

    B. R Coles., Proceedings of the Physical Society of London Section B 1952, 65, (387), 221–229.

    Article  Google Scholar 

  42. 42.

    A. L Patterson., Physical Review 1939, 56, (10), 978–982.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tao Xu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, CK., Xu, T. Direct Synthesis of Bimetallic Nanoalloys from Corresponding Bulk Alloys. MRS Online Proceedings Library 1546, 614 (2013). https://doi.org/10.1557/opl.2013.632

Download citation