ZnO/PVA Macroscopic Fibers Bearing Anisotropic Photonic Properties


Composite PVA/ZnO-nanorods fibers, synthesized through co-axial flux extrusion exhibit higher anisotropic photonic properties, both in absorption and emission, as a result of the collective alignment of the ZnO nanorods along the main axis of the PVA fiber. This photonic anisotropy is triggered by a synergistic interaction between the PVA matrix, stretched above Tg, and cooled down under strain. Compared with non-elongated fibers that present an isotropic emission, composite fibers previously submitted to a tensile stress absorb selectively UV emission when the polarized laser beam is parallel to the main axis of the fiber. In addition, their photoluminescence is also anisotropic, with a waveguide behavior along the fiber’s main axis.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, et al., Science 292, 1897 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    A. Umar, H.-W. Ra, J.-P. et al., Korean Journal of Chemical Engineering 23, 499 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, et al., J. Cryst. Growth 282, 131 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    B. P. Zhang, N. T. Binh, K. Wakatsuki, et al., Appl. Phys. Lett.84, 4098 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    R. E. Dietz, D. G. Thomas, J. J. Hopfield, J. Appl. Phys. 32, 2282 (1961); A. Mizukoshi, J. Ozawa, et al., Ieee Transactions on Power Apparatus and Systems 102, 1384 (1983).

    CAS  Article  Google Scholar 

  6. 6.

    C.-T. Chien, M.-C. Wu, C.-W. Chen, H.-H. Yang, et al., Appl. Phys. Lett. 92 (2008).

  7. 7.

    B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, et al., Science 290, 1331 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    H. Serier, H.; M.-F. Achard, O. Babot, N. Steunou, J. Maquet, J. Livage, et al., Adv. Funct. Mater. 16, 1745 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    J. Dexmer, C. M. Leroy, L. Binet, V. Heresanu, et al., Chem. Mater. 20, 5541 (2008); C. M. Leroy, M.-F. Achard, O. Babot, N. Steunou, et al., Chem. Mater. 19, 3988 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    H. Zhu, D. Yang, H. Zhang, Inorg. Mater. 42, 1210 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    P. Miaudet, S. Badaire, M. Maugey, A. Derre,. Nano letters 5, 2212–2215 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    C. Li, G. Hong, P. Wang, D. Yu, L. Qi, Chem. Mater. 21, 891 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    F. Decremps, J. Pellicer-Porres, A. M. Saitta, J.-C. Chervin, et al., Phys. Rev.B 65 (2002).

  14. 14.

    S. Chawla, N. Karar, H. Chander, Physica B-Condensed Matter 405, 198 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    J. C. Johnson, H. Yan, P. Yang, R. J. Saykally, J. Phys. Chem. B 107, 8816 (2003); X. Wang, C. J. Summers, Z. L. Wang, Nano Lett. 4, 423 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    C.-H. Hoa, J.-S. Li, Y.-J. Chena, C.-C. Wua, et al., J. Alloys & Comp. 480, 50 (2009).

    Article  Google Scholar 

  17. 17.

    A. B. Djurisic, Y. H. Leung, Small 2, 944 (2006).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rénal Backov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kinadjian, N., Achard, MF., Julian-Lopez, B. et al. ZnO/PVA Macroscopic Fibers Bearing Anisotropic Photonic Properties. MRS Online Proceedings Library 1512, 6 (2013). https://doi.org/10.1557/opl.2013.60

Download citation