Optically Active Nanoparticle Coated Polystyrene Spheres

Abstract

Nanoparticles (NPs) with either plasmonic or upconverting properties have been selectively coated onto the surfaces of polystyrene (PS) spheres, imparting their optical properties to the PS colloids. These NP coated PS spheres have many potential applications, such as in medicine as drug-delivery systems or diagnostic tools. To prepare the NP coated PS spheres, gold or core-shell NaYF4Tm0.5Yb30/NaYF4 NPs were synthesized and separately combined with amino-functionalized PS spheres. The mechanism by which the NPs adhered to the PS spheres is attributed to interactions of the NP and a polyvinylpyrrolidone additive with the surfaces of the PS spheres. Two-photon fluorescence microscopy and SERS analysis demonstrate the potential applications of these NP coated PS spheres.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Bellah, S.M. Christensen and S.M. Iqbal, J. Nanomater. 2012, 21 pages (2012).

    Google Scholar 

  2. 2.

    F. Wang, D. Banerjee, Y. Liu, X. Chen and X. Liu, Analyst 135 (8), 1839–1854 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    K.K. Jain, BMC Med. 8 (83), 11 pages (2010).

    Google Scholar 

  4. 4.

    J. Chen and J.X. Zhao, Sensors 12 (3), 21 (2012).

    Google Scholar 

  5. 5.

    (a) M. Haase and H. Schäfer, Angew. Chem. Int. Ed. 50 (26), 5808–5829 (2011); (b) H. H. Gorris and O.S. Wolfbeis, Angew. Chem., Int. Ed. 52 (13) 3584–3600 (2013); (c) D.E. Achatz, R. Ali and O.S. Wolfbeis, Top. Curr. Chem. 300, 29–50 (2011); (d) D.K. Chatterjee, M.K. Gnanasammandhan and Y. Zhang, Small 6 (24), 2781–2795 (2010); (e) L. Y. Ang, M. E. Lim, L. C. Ong and Y. Zhang, Nanomedicine 6 (7), 15 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu and F. Luan, Plasmonics 6 (3), 491–506 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    (a) B.D. Chithrani and W.C.W. Chan Nano Lett. 7, 1542–1550 (2007); (b) P.-H. Yang, X. Sun, J.-F. Chiu, H. Sun and Q.-Y. He, Bioconjugate Chem. 16, 494–496 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    (a) V. Morandi, F. Marabelli, V. Amendola, M. Meneghetti and D. Comoretto, J. Phys. Chem. C 112 (16), 6293–6298 (2008); (b) Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L.-D. Sun and C.-H. Yan, Chem. Commun. 43, 6616–6618 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    L.H. Fischer, G.S. Harms and O.S. Wolfbeis, Angew. Chem. Int. Ed. 50 (20), 4546–4551 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    (a) S.F. Lim, R. Riehn, W.S. Ryu, N. Khanarian, C.-K. Tung, D. Tank and R. H. Austin, Nano Lett. 6, 169 (2006); (b) J.-C. Boyer, C.-J. Carling, S.Y. Chua, D. Wilson, B. Johnsen, D. Baillie and N.R. Branda, Chem. Eur. J. 18, 11 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    D.K. Chatterjee, A.J. Rufaihah and Y. Zhang, Biomaterials 29 (7), 937–943 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    (a) M.C. Daniel and D. Astruc, Chem Rev. 104 (1), 293–346 (2004); (b) E. Pensa, E. Cortes, G. Corthey, P. Carro, C. Vericat, M.H. Fonticelli, G. Benitez, A.A. Rubert and R.C. Salvarezza, Accounts Chem. Res. 45 (8), 1183–1192 (2012);(c) H. Yang, S.Y. Fung and M. Liu, Angew. Chem. Int. Ed. 50(41), 9643–9646 (2011);(d) D. A. Giljohann, D. S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel and C.A. Mirkin, Angew. Chem. Int. Ed. 49(19), 4166–4169 (2010);(e) A. Bahman, S. Bakhtiari, D. Hsiao, G. Jin, B.D. Gates and N.R. Branda, Angew. Chem. Int. Ed. 48 (23), 4166–4169 (2009);(f) E.A. Nance, G.F. Woodworth, K.A. Sailor, T.-Y. Shih, Q. Xu, G. Swmanathan, D. Xiang, C. Eberhart and J. Hanes, Sci. Transl. Med., 4 (149) 8 pages (2012)

    CAS  Article  Google Scholar 

  13. 13.

    (a) K.L. Kelly, E. Coronado, L.L. Zhao and G.C. Schatz, J. Phys. Chem. 107, 668–677 (2003); (b) E. Boisselier and D. Astruc, D., Chem. Soc. Rev. 38, 1759–1782 (2009)

    CAS  Article  Google Scholar 

  14. 14.

    (a) N.J. Halas, S. Lal, S. Link, W.S. Chang, D. Natelson, J.H. Hafner and P. Nordlander, Adv. Mater. 24 (36), 4842–4877 (2012); (b) D.E. Lee, H. Koo, I. C. Sun, J.H. Ryu, K. Kim and I.C. Kwon, Chem. Soc. Rev. 41 (7), 2656–2672 (2012); (c) A. Taylor, K.M. Wilson, P. Murray, D.G. Fernig, and R. Levy, Chem. Soc. Rev. 41 (7) 2707–17 (2012);(d) E.C. Dreaden, A.M. Alkilany, X.H. Huang, C.J. Murphy and M.A. El-Sayed, Chem. Soc. Rev. 41 (7), 2740–2779 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    (a) S.A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007), p. 1–223; (b) P.L. Stiles, J.A. Dieringer, N.C. Shah and R.P. van Duyne, Annual Rev. Anal. Chem. 1, 601–626 (2008);(c) M. Fan, G.F.S. Andrade and A.G. Brolo, Anal. Chimica Acta, 693, 7–25 (2011);(d) S. Lal, N.K. Grady, J. Kundu, C.S. Levin, J.B. Lassiter, N.J. Halas, Chem. Soc. Rev. 37 (5), 898–911 (2008).

    Google Scholar 

  16. 16.

    F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen and X. Liu, Nat. Mater. 10, 968–973 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    (a) Y. Li, Y. Pan, L. Zhu, Z. Wang, D. Su and G. Xue, Macromol. Rapid Comm. 32 (21), 1741–1747 (2011); (b) Y. Liu, M. Li and G. Chen, J. Mater. Chem. A 1 (3), 930–937 (2013);(c) V.L. Schmit, R. Martoglio, B. Scott, A.D. Strickland and K.T. Carron, J. Am. Chem. Soc. 134 (1), 59–62 (2011);(d) S. Li, Y. Xia, J. Zhang, J. Han and L. Jiang, Electrophoresis 31 (18), 3090–3096 (2010);(e) S.L. Westcott, S.J. Oldenburg, T.R. Lee and N.J. Halas, Langmuir 14 (19), 5396–5401 (1998);(f) S.-C. Hsiao, J.-L. Ou, Y. Sung, C.-P. Chang and M.-D. Ger, Colloid Polym. Sci. 288 (7), 787–794 (2010);(g) N. Phonthammachai and T.J. White, Langmuir 23 (23), 11421–11424 (2007);(h) M. Gellner, S. Niebling, H. Y. Kuchelmeister, C. Schmuck and S. Schluecker, Chem. Comm. 47, 12762–12764 (2011);(i) Q. Qu, S. Peng, D. Mangelings, X. Hu and C. Yan, Electrophoresis 31 (3), 556–562 (2010);(j) Y.-C. Cao, Z. Wang, X. Jin, X.-F. Hua, M.-X. Liu and Y.-D. Zhao, Colloids Surf., A 334 (1–3), 53–58 (2009);(k) Y. Wang, X. Chen and J.-J. Zhu, Electrochem. Comm. 11 (2), 323–326 (2009);(l) A. Dokoutchaev, J.T. James, S.C. Koene, S. Pathak, G.K.S. Prakash and M. E. Thompson, Chem. Mater. 11 (9), 2389–2399 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    H.S. Qian and Y. Zhang. Langmuir 24, 12123–12125, (2008).

    CAS  Article  Google Scholar 

  19. 19.

    J.-C. Boyer, C.-J. Carling, B.D. Gates, N.R. Branda and Y. Zhao, J. Am. Chem. Soc. 132, 15766–15772 (2011).

    Article  Google Scholar 

  20. 20.

    N.J.J. Johnson, N.M. Sangeetha, J.-C. Boyer and F.C.J.M. van Veggel, Nanoscale 2, 771 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    (a) D.G. Duff, A. Baiker and P.P. Edwards, Langmuir 9, 2301–2309 (1993); (b) G.D. Moon, T. I. Lee, B. Kim, G. Chae, J. Kim, S. Kim, J.-M. Myoung and U. Jeong, 5 (11), 8600–12 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    C. Graf, S. Dembski, A. Hofmann and E. Rühl, Langmuir 22 (13), 5604–5610 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    J.R. Anema, A.G. Brolo, A. Felten and C. Bittencourt, J. Raman Spectrosc. 41, 745–751 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    S.W. Joo, S.W. Han and K. Kim, J. Colloid Interface Sci. 240, 391–399 (2001).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kinkead, B., Ali, A.A., Boyer, JC. et al. Optically Active Nanoparticle Coated Polystyrene Spheres. MRS Online Proceedings Library 1546, 626 (2013). https://doi.org/10.1557/opl.2013.606

Download citation