Atomistic Ordering in Body Centered Cubic Uranium-Zirconium Alloy

Abstract

The metallic binary-alloy fuel Uranium-Zirconium is important for the use of the new generation of advanced fast reactors. Uranium-Zirconium goes through a phase transition at higher temperatures to a (gamma) Body Centered Cubic (BCC) phase. The BCC high temperature phase is particularly important, since the BCC phase corresponds to the temperature range in which the fast reactors will operate. A semi-empirical MEAM (Modified Embedded Atom Method) potential is presented for Uranium-Zirconium. The physical properties of the Uranium-Zirconium binary alloy were reproduced using Molecular Dynamics (MD) simulations and Monte Carlo (MC) simulations with the MEAM potential. This is a large step in making a computationally acceptable fuel performance code.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bauer, A. A. (1959). An Evaluation of the Properties and Behavior of Zirconium-Uranium Alloys, Battelle Memorial Inst., Columbus, Ohio.

  2. 2.

    Beeler, B., et al. (2010). “First principles calculations for defects in U.” Journal of Physics: Condensed Matter 22(50): 505703.

    CAS  Google Scholar 

  3. 3.

    Beeler, B., et al. (2011). “First-principles calculations of the stability and incorporation of helium, xenon and krypton in uranium.” Journal of Nuclear Materials.

  4. 4.

    Bozzolo, G., et al. (2010). “Surface properties, thermal expansion, and segregation in the U–Zr solid solution.” Computational Materials Science 50(2): 447–453.

    CAS  Article  Google Scholar 

  5. 5.

    Droegkamp, R. (1955). HOT MALLEABILITY OF ZIRCALOY-2 AND HIGH ZIRCONIUM-URANIUM ALLOYS, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh.

  6. 6.

    Landa, A., et al. (2012). “Ab Initio Study of Advanced Metallic Nuclear Fuels for Fast Breeder Reactors.” MRS Online Proceedings Library 1444(1).

    Article  Google Scholar 

  7. 7.

    Landa, Alex, Per Söderlind, and Patrice EA Turchi. “Density-functional study of the U–Zr system.” Journal of Alloys and Compounds 478.1 (2009): 103–110.

    CAS  Article  Google Scholar 

  8. 8.

    Leibowitz, L., et al. (1989). “Thermodynamics of the uranium-zirconium system.” Journal of Nuclear Materials 167: 76–81.

    Article  Google Scholar 

  9. 9.

    Okamoto, H. (2007). “U-Zr (Uranium-Zirconium).” Journal of Phase Equilibria and Diffusion 28(5): 499–500.

    CAS  Article  Google Scholar 

  10. 10.

    Rough, F. (1955). An Evaluation of Data on Zirconium-Uranium Alloys, Battelle Memorial Inst., Columbus, Ohio.

  11. 11.

    Baskes, M. I. “Modified embedded-atom potentials for cubic materials and impurities.” Physical Review B 46.5 (1992): 2727.

    CAS  Article  Google Scholar 

  12. 12.

    Kim, Young-Min, Byeong-Joo Lee, and M. I. Baskes. “Modified embedded-atom method interatomic potentials for Ti and Zr.” Physical Review B 74.1 (2006): 014101.

    Article  Google Scholar 

  13. 13.

    Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller A E 1953 J. Chem. Phys. 21 1087

    CAS  Article  Google Scholar 

  14. 14.

    Wang, Guofeng, et al. “Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M= Ni, Re, Mo).” Progress in surface science 79.1 (2005): 28–45.

    CAS  Google Scholar 

  15. 15.

    Chevalier, Pierre-Yves, Evelyne Fischer, and Bertrand Cheynet. “Progress in the thermodynamic modelling of the O–U–Zr ternary system.” Calphad 28.1 (2004): 15–40.

    CAS  Article  Google Scholar 

  16. 16.

    Akabori, M., et al. “Stability and structure of the δ phase of the U-Zr alloys.”Journal of nuclear materials 188 (1992): 249–254.

    CAS  Article  Google Scholar 

  17. 17.

    Baskes, M. I., and R. A. Johnson. “Modified embedded atom potentials for HCP metals.” Modelling and Simulation in Materials Science and Engineering 2.1 (1999): 147.

    Article  Google Scholar 

  18. 18.

    Lee, Byeong-Joo, and M. I. Baskes. “Second nearest-neighbor modified embedded-atom-method potential.” Physical Review B 62.13 (2000): 8564.

    CAS  Article  Google Scholar 

  19. 19.

    Lee, Byeong-Joo, et al. “Second nearest-neighbor modified embedded atom method potentials for bcc transition metals.” Physical Review B 64.18 (2001): 184102.

    Article  Google Scholar 

  20. 20.

    Jelinek, B., et al. “Modified embedded-atom method interatomic potentials for the Mg-Al alloy system.” Physical Review B 75.5 (2007): 054106.

    Article  Google Scholar 

  21. 21.

    Kim, Young-Min, Byeong-Joo Lee, and M. I. Baskes. “Modified embedded-atom method interatomic potentials for Ti and Zr.” Physical Review B 74.1 (2006): 014101.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alex P Moore.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moore, A.P., Beeler, B., Baskes, M. et al. Atomistic Ordering in Body Centered Cubic Uranium-Zirconium Alloy. MRS Online Proceedings Library 1514, 27 (2013). https://doi.org/10.1557/opl.2013.517

Download citation