Skip to main content
Log in

Si Quantum Dot Structures and Some Aspects of Applications

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

This paper presents briefly the history of emission study in Si quantum dots (QDs) in the last two decades. Stable light emission of Si QDs and NCs was observed in the spectral ranges: blue, green, orange, red and infrared. The analysis of recombination transitions and the different ways of the emission stimulation in Si QD structures, related to the element variation for the passivation of surface dangling bonds, as well as the plasmon induced emission and rare earth impurity activation, have been discussed.

The different applications of Si QD structures in quantum electronics, such as: Si QD light emitting diodes, Si QD single union and tandem solar cells, Si QD memory structures, Si QD based one electron devices and double QD structures for spintronics, have been presented. The different features of poly-, micro- and nanocrystalline silicon for solar cells, that is a mixture of both amorphous and crystalline phases, such as the silicon nanocrystals (NCs) or QDs embedded in a α-Si:H matrix, as well as the thin film 2-cell or 3-cell tandem solar cells based on Si QD structures have been discussed as well. Silicon NC based structures for non-volatile memory purposes, the recent studies of Si QD base single electron devices and the single-electron occupation of QDs as an important component to the measurement and manipulation of spins in quantum information processing have been analyzed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.V. Torchynska, “ Nanocrystals and quantum dots. Some physical aspects” in the book “Nanocrystals and quantum dots of group IV semiconductors”, Editors: T. V. Torchynska and Yu. Vorobiev, American Scientific Publisher, 2010, 1–42.

    Google Scholar 

  2. S. Furukawa, and T. Miyasato, Jpn. J. Appl. Phys., Part 2 27, L2207, (1988).

    Article  Google Scholar 

  3. A.G. Cullis, and L. T. Canham, Nature, 335, 335 (1991).

    Article  Google Scholar 

  4. V. Lehmann, U. Gosele, Appl. Phys. Lett. 58, 856 (1991).

    Article  CAS  Google Scholar 

  5. S.M. Prokes, Appl. Phys. Lett. 62, 3244 (1993).

    Article  CAS  Google Scholar 

  6. Y. Kanemitsu, Sh. Okamoto, Phys. Rev. B 56, R1696 (1997).

    Article  CAS  Google Scholar 

  7. S. Schuppler, S.L. Friedman, M.A. Marcus, D.L. Adler, Y.H. Xie, F.M. Ross et al. Phys. Rev. B 52, 4910 (1995).

    Article  CAS  Google Scholar 

  8. T.V. Torchynska, L.I. Khomenkova, N.E. Korsunska, M.K. Sheinkman, Physica B. Conden. Mat. 273274 955–958 (1999).

    Article  Google Scholar 

  9. T.V. Torchinskaya, J. Aguilar Hernandez, L. Schacht Hernandez, G. Polupan, Y. Goldstein, A. Many, J. Jedrzejewski, A. Kolobov, Microelect. Engineer. 66, 83–90 (2003).

    Article  CAS  Google Scholar 

  10. K.A. Jeon, J.H. Kim, J.B. Choi, K.B. Han, S.Y. Lee, Mater. Sci. Eng. B 23 (2003) 1017.

    Article  CAS  Google Scholar 

  11. T.V. Torchynska, A. Vivas Hernandez, M. Dybiec, Y. Emirov, I. Tarasov, S. Ostapenko, Y. matsumoto, phys. stat.solid.(c). 2(6), 1832–1836 (2005).

    Article  CAS  Google Scholar 

  12. T.V. Torchynska, A. Diaz Cano, M. Dybic, S. Ostapenko, M. Mynbaeva, Physica B, Conden. Mat. 376377, 367–369 (2006).

    Article  CAS  Google Scholar 

  13. M. Dybiec, S. Ostapenko, T. V. Torchynska, E.V. Lozada, Appl. Phys. Lett. 84(25), 5165–5167 (2004).

    Article  CAS  Google Scholar 

  14. T.V. Torchynska, M. Morales Rodriguez, F.G. Becerril-Espinoza, N.E. Korsunskaya, L.Yu. Khomenkova, L.V. Shcherbyna, Phys. Rev.B 65, 115313 (2002).

    Article  CAS  Google Scholar 

  15. T.V. Torchynska, J. Appl. Phys. 92, 4019 (2002).

    Article  CAS  Google Scholar 

  16. T. Torchynska, J. Aguilar-Hernandez, A.I. Diaz Cano, G. Contreras-Puente, F.G. Becerril Espinoza, Yu.V. Vorobiev, Y. Goldstein, A. Many, J. Jedrzejewski, B.M. Bulakh and L.V. Scherbina, Physica B, Conden. Mat. 308310, 1108–1112 (2001).

    Article  Google Scholar 

  17. T.V. Torchynska, Opto-electronics Review, 2, 121–130 (1998)

    Google Scholar 

  18. N.E. Korsunskaya, T.V. Torchinskaya, B.R. Dzhumaev, L.Yu. Khomenkova, B.M. Bulakh, Semiconductors, 31, 773 (1997).

    Article  Google Scholar 

  19. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, H. Mimura, Phys. Rev. B, 48, 2827 (1993).

    Article  CAS  Google Scholar 

  20. G. G. Qin, X. S. Liu, S. Y. Ma, J. Lin, G. Q. Yao. X. Y. Lin, K. X. Lin, Phys. Rev. B, 55, 12876 (1997).

    Article  CAS  Google Scholar 

  21. T. V. Torchynska, N. E. Korsunskaya, L. Yu. Khomenkova, B. R. Dzhumaev, S. M. Prokes, Thin Solid Films, 381/1, 88 (2001).

    Article  Google Scholar 

  22. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 82, 197 (1999).

    Article  CAS  Google Scholar 

  23. A. Puzder, A.J. Williamson, J. C. Grossman, G. Galli, Phys. Rev. Lett. 88, 097401 (2002).

    Article  CAS  Google Scholar 

  24. K.A. Littau, P.J. Szajowski, A.J. Muller, A.R. Kortan, and L.E. Brus, J. Phys. Chem. 97, 1224 (1993).

    Article  CAS  Google Scholar 

  25. J.P. Wilcoxon, G.A. Samara and P.N. Provencio, Phys. Rev. B 60, 2704 (1999).

    Article  CAS  Google Scholar 

  26. G. Ledoux, J. Gong, F. Huisken, O. Guillois and C. Reynaud, Appl. Phys. Lett. 80, 4834 (2002).

    Article  CAS  Google Scholar 

  27. T.V. Torchynska, “Si and Ge quantum dot structures” in the book “Nanocrystals and quantum dots of group IV semiconductors”, Editors: T. V. Torchynska and Yu. Vorobiev, American Scientific Publisher, 2010, 42–84.

    Google Scholar 

  28. J.D. Holmes, K.J. Ziegler, C. Doty, L.E. Pell, K.P. Johnston, B.A. Korgel, J. Am. Chem. Soc. 123, 3743 (2001).

    Article  CAS  Google Scholar 

  29. R.M. Sankaran, D. Holunga, R.C. Flagan, K.P. Giapis, Nano Lett. 5, 531 (2005).

    Article  CAS  Google Scholar 

  30. L. Tsybeskov, S.P. Duttagupta, K.D. Hirschman, P.M. Fauchet, Appl. Phys. Lett. 68, 2058 (1996).

    Article  CAS  Google Scholar 

  31. M.E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, S. Lorenti, J.Lumin. 121, 187 (2006).

    Article  CAS  Google Scholar 

  32. K.H. Kim, J.H. Shin, H.M. Park, Ch. Huh, T.Y. Kim, K.S. Cho, J.Ch. Hong, G.Y. Sung, Appl. Phys. Lett. 89, 191120 (2006).

    Article  CAS  Google Scholar 

  33. J. S. Biteen, N. S. Lewis and H. A. Atwater, Appl. Phys. Lett. 88, 131109 (2006).

    Article  CAS  Google Scholar 

  34. M.E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, C. Bongiorno, J. Phys. E 16, 547 (2003).

    Article  CAS  Google Scholar 

  35. L. Yu. Khomenkova, “Si nanocrystals and quantum dots embedded in amorphous Si matrix”, in the book “Nanocrystals and quantum dots of group IV semiconductors”, Editors: T. V. Torchynska and Yu. Vorobiev, American Scientific Publisher, 2010, 85–112.

    Google Scholar 

  36. R. Iiduka, A. Heya, H. Matsumura, Solar Energy Materials and Solar Cells, 48, 279 (1997).

    Article  CAS  Google Scholar 

  37. H. Meiling, A.M. Brockhoff, J.K. Rath, R.E.I. Schropp, J. Non-Cryst. Solids, 227230, 1202(1998).

    Article  Google Scholar 

  38. A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, Solar Energy Materials and Solar Cells, 78, 469 (2003).

    Article  CAS  Google Scholar 

  39. V. L. Dalal, A. Madhavan, J. Non-Cryst. Solids, 354, 2403 (2008).

    Article  CAS  Google Scholar 

  40. M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion, Springer, 2003.

    Google Scholar 

  41. G. Conibeer, M. Green, E.-Ch. Cho, D. König, Y.-H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, Sh. Huang, D. Song, Ch. Flynn, S. Park, X. Hao, D. Mansfield Thin Solid Films, 516, 6748 (2008)

    Article  CAS  Google Scholar 

  42. Shigeru Yamada, Yasuyoshi Kurokawa, Shinsuke Miyajima, Akira Yamada, and Makoto Konagai, Proc. IEEE 35th PVSC, No. 5617097, 766 (2010).

    Google Scholar 

  43. Zs.J. Horváth, P. Basa, “Nanocrystal memory structures” in the book “Nanocrystals and quantum dots of group IV semiconductors”, Editors: T. V. Torchynska and Yu. Vorobiev, American Scientific Publisher, 2010, 225–252.

    Google Scholar 

  44. P. Normand, E. Kapetanakis, P. Dimitrakis, D. Skarlatos, K. Beltsios, D. Tsoukalas, et al. Nucl. Instr. and Meth. B, 216, 228 (2004).

    Article  CAS  Google Scholar 

  45. I. Antonova, “Electrical properties of semiconductor nanocrystals and quantum dots in dielectric matrix”, in the book “Nanocrystals and quantum dots of group IV semiconductors”, Editors: T. V. Torchynska and Yu. Vorobiev, American Scientific Publisher, 2010, 149–187.

    Google Scholar 

  46. T. Baron, P. Gentile, N. Magnea, P. Mur, Appl. Phys. Lett., 79, 1175 (2001).

    Article  CAS  Google Scholar 

  47. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L. Kouwenhoven, Rev. Mod. Phys. 75, 1, (2003).

    Article  CAS  Google Scholar 

  48. J.M. Kikkawa, I.P. Smorchkova, N. Samarth, D.D. Awschalom, Science 277, 1284 (1997).

    Article  CAS  Google Scholar 

  49. V. Cerletti, W.A. Coish, O. Gywat and D. Loss, Nanotechnol. 16, R27 (2005).

    Article  CAS  Google Scholar 

  50. C.B. Simmons, M. Thalakulam, N. Shaji, L.J. Klein, H. Qin, R.H. Blick, Appl. Phys. Lett. 91, 213103 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbyna, L.V., Torchynska, T.V. Si Quantum Dot Structures and Some Aspects of Applications. MRS Online Proceedings Library 1534, 5–12 (2013). https://doi.org/10.1557/opl.2013.291

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2013.291

Navigation