Simulating Radiation-Induced Defect Formation in Pyrochlores

Abstract

The accuracy and robustness of new Buckingham potentials for the pyrochlores Gd2Ti2O7 and Gd2Zr2O7 is demonstrated by calculating and comparing values for a selection of point defects with those calculated using a selection of other published potentials and our ownab inito values. Frenkel pair defect formation energies are substantially lowered in the presence of a small amount of local cation disorder. The activation energy for oxygen vacancy migration between adjacent O48f sites is calculated for Ti and Zr pyrochlores with the energy found to be lower for the non-defective Ti than for the Zr pyrochlore by ∼0.1 eV. The effect of local cation disorder on the VO48f → VO48f migration energy is minimal for Gd2Ti2O7, while the migration energy is lowered typically by ∼43 % for Gd2Zr2O7. As the healing mechanisms of these pyrochlores are likely to rely upon the availability of oxygen vacancies, the healing of a defective Zr pyrochlore is predicted to be faster than for the equivalent Ti pyrochlore.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D.S.D. Gunn et al., J. Mater. Chem. 22, 4675 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    J.A. Purton and N.L. Allan, J. Mater. Chem. 12, 2923 (2002)

    CAS  Article  Google Scholar 

  3. 3.

    R. Devanathan, W.J. Weber and J.D. Gale, Energy Environ. Sci., 3, 1551 (2010)

    CAS  Article  Google Scholar 

  4. 4.

    P.J. Wilde and C.R.A. Catlow, Solid State Ionics 112, 173 (1998)

    CAS  Article  Google Scholar 

  5. 5.

    J.D. Gale, J. Chem. Soc., Faraday Trans., 93, 629 (1997)

    CAS  Article  Google Scholar 

  6. 6.

    N.F. Mott and M.J. Littleton, Trans. Faraday Soc. 34, 485 (1938)

    CAS  Article  Google Scholar 

  7. 7.

    G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 9978 (2000)

    CAS  Article  Google Scholar 

  8. 8.

    J. Kästner et al., J. Phys. Chem. A 113, 11856 (2009)

    Article  Google Scholar 

  9. 9.

    D.C. Liu and J. Nocedal, Math. Program. 45, 503 (1989)

    Article  Google Scholar 

  10. 10.

    P.-M. Anglade et al., Computer Phys. Commun. 180, 2582 (2009)

    Article  Google Scholar 

  11. 11.

    K. Burke, J.P. Perdew and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  12. 12.

    G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999)

    CAS  Article  Google Scholar 

  13. 13.

    C.G. Broyden, J. Inst. Math. App. 6, 76 (1970); R. Fletcher, Comp. J. 13, 317 (1970); D. Goldfarb, Math. Comp. 24, 23 (1970); D.F. Shanno, Math. Comp. 24, 647 (1970)

    Article  Google Scholar 

  14. 14.

    O. Knop, F. Brisse and L. Castelliz, Can. J. Chem. 47, 971 (1969)

    CAS  Article  Google Scholar 

  15. 15.

    T.S. Bush et al., J. Mater. Chem. 4, 831 (1994)

    CAS  Article  Google Scholar 

  16. 16.

    L. Minervini, R.W. Grimes and K.E. Sickafus, J. Am. Ceram. Soc. 83, 1873 (2000)

    CAS  Article  Google Scholar 

  17. 17.

    R.E. Williford et al., J. Electroceram 3, 409 (1999)

    CAS  Article  Google Scholar 

  18. 18.

    M. Pirzada et al., Solid State Ionics 140, 201 (2001)

    CAS  Article  Google Scholar 

  19. 19.

    H.L. Tuller, J. Phys. Chem. Solids 55, 1393 (1994)

    CAS  Article  Google Scholar 

  20. 20.

    S. Kramer, S. Spears and H.L. Tuller, Solid State Ionics 72, 59 (1994)

    CAS  Article  Google Scholar 

  21. 21.

    M.P. van Dijk, K.J. de Vries and A.J. Burggraaf, Solid State Ionics 9, 913 (1983)

    Article  Google Scholar 

  22. 22.

    P.K. Moon and H.L. Tuller, MRS Online Proc. Libr. 135, 149 (1989)

    CAS  Article  Google Scholar 

  23. 23.

    A.J. Burggraaf, T. van Dijk and M.J. Veerkerk, Solid State Ionics 5, 519 (1981)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David S D Gunn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gunn, D.S.D., Purton, J.A. & Todorov, I.T. Simulating Radiation-Induced Defect Formation in Pyrochlores. MRS Online Proceedings Library 1514, 15 (2013). https://doi.org/10.1557/opl.2013.197

Download citation