Oxidation Dynamics of a Chain of Aluminum Nanoparticles

Abstract

Multimillion-atom molecular dynamics simulations are used to investigate burning behavior of a chain of three alumina-coated aluminum nanoparticles (ANPs), where particles one and three are heated above the melting temperature of pure aluminum. The mode and mechanism behind the heat and mass transfer from the hot ANPs (particles one and three) to the middle, cold ANP (particle two) are studied. The hot nanoparticles oxidize first, after which hot Al atoms penetrate into the cold nanoparticle. It is also found that due to the penetration of hot Al atoms, the cold nanoparticle oxidizes at a faster rate than in the initially heated nanoparticles. The calculated speed of penetration is found to be 54 m/s, which is within the range of experimentally measured flame propagation rates. As the atoms penetrate into the central ANP, they maintain their relative positions. The atoms from the shell of the central ANP form the first layer, which is followed by the atoms from the shell of the outer ANP making the second layer and lastly the atoms from the core of the outer ANPs form the third layer. In addition to heating the central ANP by convection, the ejected hot Al atoms from the outer ANPs initiate exothermic oxidation reactions inside the central ANP, leading to further heating within the central ANP. During 1 ns, all three ANPs fuse together, forming a single ellipsoidal aggregate.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    X. Phung, J. Groza, E. A. Stach, L. N. Williams and S. B. Ritchey, Materials Science and Engineering A 359 (1), 261 (2003).

    Article  Google Scholar 

  2. 2.

    L. Meda, G. Marra, L. Galfetti, F. Severini and L. De Luca, Materials Science and Engineering: C 27 (5–8), 1393 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    A. Gromov, A. Ilyin, U. Forter-Barth and U. Teipel, Propellants Explosives Pyrotechnics 31 (5), 401 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    A. Ilyin, A. Gromov, V. An, F. O. Faubert, C. de Izarra, A. Espagnacq and L. Brunet, Propellants Explosives Pyrotechnics 27 (6), 361 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    R. G. Sarawadekar and J. P. Agrawal, Defence Science Journal 58 (4), 486 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    L. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. Vorozhtsov, V. Sedoi and V. Babuk, Combustion, explosion, and shock waves 41 (6), 680 (2005).

    Article  Google Scholar 

  7. 7.

    E. L. Dreizin, Combustion and Flame 105 (4), 541 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    R. W. Armstrong and W. L. Elban, Materials Science and Technology 22 (4), 381 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    B. W. Asay, S. F. Son, J. R. Busse and D. M. Oschwald, Propellants, Explosives, Pyrotechnics 29 (4), 216 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    K. W. Watson, M. L. Pantoya and V. I. Levitas, Combustion and Flame 155 (4), 619 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    O. Abouali and A. Falahatpisheh, Heat and Mass Transfer 46 (1), 15 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    S. Alavi, J. W. Mintmire and D. L. Thompson, The Journal of Physical Chemistry B 109 (1), 209 (2004).

    Article  Google Scholar 

  13. 13.

    T. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, S. Ogata and S. Rodgers, Phys Rev Lett 82 (24), 4866 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    A. Hasnaoui, O. Politano, J. M. Salazar, G. Aral, R. K. Kalia, A. Nakano and P. Vashishta, Surf Sci 579 (1), 47 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    P. Puri and V. Yang, The Journal of Physical Chemistry C 111 (32), 11776 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    R. W. Armstrong, B. Baschung, D. W. Booth and M. Samirant, Nano Letters 3 (2), 253 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    A. Hahma, A. Gany and K. Palovuori, Combustion and Flame 145 (3), 464 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    D. S. Wen, L. Zhang and Y. R. He, Heat and Mass Transfer 45 (8), 1061 (2009).

    Article  Google Scholar 

  19. 19.

    R. Clark, Ph.D. dissertation, University of Southern California, 2010.

  20. 20.

    V. I. Levitas, Combustion and Flame 156 (2), 543 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    V. I. Levitas, M. L. Pantoya and B. Dikici, Appl Phys Lett 92 (1), 011921 (2008).

    Article  Google Scholar 

  22. 22.

    V. I. Levitas, M. L. Pantoya and K. W. Watson, Appl Phys Lett 92 (20), 201917 (2008).

    Article  Google Scholar 

  23. 23.

    W. Wang, R. Clark, A. Nakano, R. K. Kalia and P. Vashishta, Appl Phys Lett 95 (26), 261901 (2009).

    Article  Google Scholar 

  24. 24.

    A. F. Voter and S. P. Chen, presented at the Mater. Res. Soc. Proc, 1987 (unpublished).

  25. 25.

    P. Vashishta, R. K. Kalia, A. Nakano and J. P. Rino, Journal of Applied Physics 103 (083504), 083504 (2008).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adarsh Shekhar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shekhar, A., Wang, W., Clark, R. et al. Oxidation Dynamics of a Chain of Aluminum Nanoparticles. MRS Online Proceedings Library 1521, 603 (2013). https://doi.org/10.1557/opl.2013.163

Download citation