Skip to main content
Log in

Oxidation Dynamics of Aluminum Nanorods

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Understanding of combustion of metastable intermolecular composites, including the burning of aluminum nanoparticles, is critical for broad applications such as propulsion, explosives and other pyrotechnics. Aluminum nanorods (Al-NR) with oxidized shells are good candidates for stable fuel-oxidizer combinations. We investigate the oxidation dynamics of Al-NRs of different diameters (26, 36 and 46 nm) but the same aspect ratio using molecular dynamics simulations. We heat one end of the Al-NR to 1100 K and then study the oxidation reaction at the interface of the alumina shell and the Al core. We find: (1) heat produced by oxidation causes the melting of nanorods; (2) heat release is accelerated due to Al-O reaction at outside-shell and core-shell interfaces; and (3) the larger surface-to-volume ratio causes faster burning of thinner nanorods. We present results for the oxidation speed of nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.F. Wang, Y.Q. Yang, Z.Y. Sun, D.D. Dlott, Chem Phys Lett, 368189–194 (2003).

  2. M.M. Mench, K.K. Kuo, C.L. Yeh, Y.C. Lu, Combust Sci Technol, 135 269–292 (1998).

    Article  CAS  Google Scholar 

  3. V.I. Levitas, Combust Flame, 156 543–546 (2009).

    Article  CAS  Google Scholar 

  4. S.A. Rashkovskii, Combust Explo Shock Waves, 43 654–663 (2007).

    Article  Google Scholar 

  5. A.P. Il’in, E.M. Popenko, A.A. Gromov, Y.Y. Shamina, D.V. Tikhonov, Combust Explo Shock Waves, 38 665–669 (2002).

    Article  Google Scholar 

  6. V.G. Grigorev, V.E. Zarko, K.P. Kutsenogii, Combust Explo Shock Waves, 17 245–251 (1981).

    Article  Google Scholar 

  7. V.V. Karasev, A.A. Onischuk, O.G. Glotov, A.M. Baklanov, A.G. Maryasov, V.E. Zarko, V.N. Panfilov, A.I. Levykin, K.K. Sabelfeld, Combust Flame, 138 40–54 (2004).

    Article  CAS  Google Scholar 

  8. S. Gallier, F. Sibe, O. Orlandi, P Combust Inst, 33 1949–1956 (2011).

    Article  CAS  Google Scholar 

  9. P. Zhu, J.C.M. Li, C.T. Liu, Mat Sci Eng a-Struct, 240 532–539 (1997).

    Article  Google Scholar 

  10. J.Y. Malchi, R.A. Yetter, S.F. Son, G.A. Risha, P Combust Inst, 31 2617–2624 (2007).

    Article  Google Scholar 

  11. S. Subramaniam, S. Hasan, S. Bhattacharya, Y. Gao, S. Apperson, M. Hossain, R.V. Shende, S. Gangopadhyay, P. Redner, D. Kapoor, S. Nicolich, Mater Res Soc Symp P, 896 9–14 (2006).

    Google Scholar 

  12. M.R. Weismiller, J.Y. Malchi, J.G. Lee, R.A. Yetter, T.J. Foley, P Combust Inst, 33 1989–1996 (2011).

    Article  CAS  Google Scholar 

  13. A. Pivkina, P. Ulyanova, Y. Frolov, S. Zavyalov, J. Schoonman, Propell Explos Pyrot, 29 39–48 (2004).

    Article  CAS  Google Scholar 

  14. A. Bezmelnitsyn, R. Thiruvengadathan, S. Barizuddin, D. Tappmeyer, S. Apperson, K. Gangopadhyay, S. Gangopadhyay, P. Redner, M. Donadio, D. Kapoor, S. Nicolich, Propell Explos Pyrot, 35 384–394 (2010).

    Article  CAS  Google Scholar 

  15. F. Hao, Y. Sonnefraud, P. Van Dorpe, S.A. Maier, N.J. Halas, P. Nordlander, Nano Lett, 8 3983–3988 (2008).

    Article  CAS  Google Scholar 

  16. M.B. Pomfret, D.J. Brown, A. Epshteyn, A.P. Purdy, J.C. Owrutsky, Chem Mater, 20 5945–5947 (2008).

    Article  CAS  Google Scholar 

  17. C.S. Li, W.Q. Ji, J. Chen, Z.L. Tao, Chem Mater, 19 5812–5814 (2007).

    Article  CAS  Google Scholar 

  18. Y.B. Lu, H. Tohmyoh, M. Saka, H.L. Pan, Optoelectron Adv Mat, 5 1219–1222 (2011).

    CAS  Google Scholar 

  19. S.M. Yang, S.G. Jang, D.G. Choi, S. Kim, H.K. Yu, Small, 2 458–475 (2006).

    Article  CAS  Google Scholar 

  20. P. Vashishta, A. Nakano, R.K. Kalia, I. Ebbsjo, Mat Sci Eng B-Solid, 37 56–71 (1996).

    Article  Google Scholar 

  21. J.M. Cohen, A.F. Voter, Surf Sci, 313 439–447 (1994).

    Article  CAS  Google Scholar 

  22. W.Q. Wang, R. Clark, A. Nakano, R.K. Kalia, P. Vashishta, Appl Phys Lett, 95 261901 (2009).

    Article  Google Scholar 

  23. W.Q. Wang, R. Clark, A. Nakano, R.K. Kalia, P. Vashishta, Appl Phys Lett, 96 181906 (2010).

    Article  Google Scholar 

  24. B.S. Bockmon, M.L. Pantoya, S.F. Son, B.W. Asay, J.T. Mang, J Appl Phys, 98 064903 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Nakano, A., Kalia, R.K. et al. Oxidation Dynamics of Aluminum Nanorods. MRS Online Proceedings Library 1521, 603 (2013). https://doi.org/10.1557/opl.2013.131

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.131

Navigation