Skip to main content
Log in

Materials for All-Solid-State Lithium Ion Batteries

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Garnet-type electrolytes are currently receiving much attention for applications in Li-ion batteries, as they possess high ionic conductivity and chemical stability. Doping the garnet structure has proved to be a good way to improve the Li ion conductivity and stability. The present study includes effects of Y- doping in Li5La3Nb2O12 on Li ion conductivity and stability of “Li5+2xLa3Nb2-xYxO12” (0.05 ≤ x ≤ 0.75) under various environments, as well as chemical stability studies of Li5+xBaxLa3-xM2O12 (M = Nb, Ta) in water. “Li6.5La3Nb1.25Y0.75O12” showed a very high ionic conductivity of 2.7 х 10−4 Scm−1 at 25 °C, which is comparable to the highest value reported for garnet-type compounds, e.g., Li7La3Zr2O12. The selected members show very good stability against high temperatures, water, Li battery cathode Li2CoMn3O8 and carbon. The Li5+xBaxLa3-xNb2O12 garnets have shown to readily undergo an ion-exchange (proton) reaction under water treatment at room temperature; however, the Ta-based garnet appears to exhibit considerably higher stability under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Thangadurai and W. Weppner, Ionics 12, 81–92 (2006).

    Article  CAS  Google Scholar 

  2. A. D. Robertson, A. R. West and A.G. Ritchie, Solid State Ionics 104, 1 (1997).

    Article  CAS  Google Scholar 

  3. X. Xu, J. B. Bates, G. E. Jellison and F. X. Hart, J. Electrochem. Soc. 144, 524 (1997).

    Article  Google Scholar 

  4. H. Kawai and J. Kuwano, J. Electrochem. Soc. 141, L78 (1994).

    Article  CAS  Google Scholar 

  5. S. Stramare, V. Thangadurai and W. Weppner, Chem. Mater. 15, 3974 (2003).

    Article  CAS  Google Scholar 

  6. V. Thangadurai, H. Kaack and W. Weppner, J. Am. Ceram. Soc. 86, 437 (2003).

    Article  CAS  Google Scholar 

  7. E. J. Cussen, Chem. Commun. 412 (2006).

  8. J. Percival, E. Kendrick and P. Slater, Solid State Ionics 179, 1666 (2008).

    Article  CAS  Google Scholar 

  9. R. Murugan, W. Weppner, P. Schmid-Beurmann and V. Thangadurai, Mater. Sci. Eng. B 143, 14 (2007).

    Article  CAS  Google Scholar 

  10. E. J. Cussen and T. W. S. Yip, J. Solid State Chem. 180, 1832 (2007).

    Article  CAS  Google Scholar 

  11. M. P. O’Callaghan, A. S. Powell, J. J. Titman, G. Z. Chen and E. J. Cussen, Chem. Mater. 20, 2360 (2008).

    Article  Google Scholar 

  12. V. Thangadurai and W. Weppner, Adv. Funct. Mater. 15, 107 (2005)

    Article  CAS  Google Scholar 

  13. V. Thangadurai and W. Weppner, Ionics 11, 11 (2005).

    Article  CAS  Google Scholar 

  14. R. Murugan, V. Thangadurai and W. Weppner, Appl. Phys. A, 91, 615 (2008).

    Article  CAS  Google Scholar 

  15. S. Narayanan, V. Epp, M. Wilkening and V. Thangadurai, RSC Adv. 2, 2553 (2012).

    Article  CAS  Google Scholar 

  16. A. Ramzy and V. Thangadurai, Appl. Mater. Interfaces 2, 385 (2010).

    Article  CAS  Google Scholar 

  17. S. Narayanan and V. Thangadurai, J. Power Sources 196, 8085 (2011).

    Article  CAS  Google Scholar 

  18. S. Narayanan, F. Ramezanipour and V. Thangadurai, J. Phys. Chem. C 116, 20154 (2012).

    Article  CAS  Google Scholar 

  19. M. P. O’Callaghan and E. J. Cussen, Solid State Sci. 10, 390 (2008).

    Article  Google Scholar 

  20. R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem. Int. Ed. 46, 7778 (2007).

    Article  CAS  Google Scholar 

  21. J. Awaka, N. Kijima, H. Hayakawa and J. Akimoto, J. Solid State Chem. 182, 2046 (2009).

    Article  CAS  Google Scholar 

  22. M. Nyman, T. M. Alam, S. K. McIntyre, G. C. Bleier and D. Ingersoll, Chem. Mater. 22, 5401 (2010).

    Article  CAS  Google Scholar 

  23. C. Galven, J. Fourquet, M. Crosnier-Lopez and F. Le Berre, Chem. Mater., 23, 1892 (2011).

    Article  CAS  Google Scholar 

  24. L. Truong and V. Thangadurai, Chem. Mater. 23, 3970 (2011).

    Article  CAS  Google Scholar 

  25. A. Boulant, P. Maury, J. Emery, J. Buzare and O. Bohnke, Chem. Mater. 21, 2209 (2009).

    Article  CAS  Google Scholar 

  26. A. Boulant, J. F. Bardeau, A. Jouanneaux, J. Emery, J. Buzare and O. Bohnke, Dalton Trans. 39, 3968 (2010).

    Article  CAS  Google Scholar 

  27. O. Bohnke, Q. N. Pham, A. Boulant, J. Emery, T. Salkus and M. Barre, Solid State Ionics 188, 144 (2011).

    Article  CAS  Google Scholar 

  28. L. Truong and V. Thangadurai, Inorg. Chem. 51, 1222 (2012).

    Article  CAS  Google Scholar 

  29. L. Truong, J. Colter and V. Thangadurai, J. Power Sources (to be published).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanan, S., Truong, L. & Thangadurai, V. Materials for All-Solid-State Lithium Ion Batteries. MRS Online Proceedings Library 1496, 311 (2012). https://doi.org/10.1557/opl.2013.103

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.103

Navigation