Materials for All-Solid-State Lithium Ion Batteries

Abstract

Garnet-type electrolytes are currently receiving much attention for applications in Li-ion batteries, as they possess high ionic conductivity and chemical stability. Doping the garnet structure has proved to be a good way to improve the Li ion conductivity and stability. The present study includes effects of Y- doping in Li5La3Nb2O12 on Li ion conductivity and stability of “Li5+2xLa3Nb2-xYxO12” (0.05 ≤ x ≤ 0.75) under various environments, as well as chemical stability studies of Li5+xBaxLa3-xM2O12 (M = Nb, Ta) in water. “Li6.5La3Nb1.25Y0.75O12” showed a very high ionic conductivity of 2.7 х 10−4 Scm−1 at 25 °C, which is comparable to the highest value reported for garnet-type compounds, e.g., Li7La3Zr2O12. The selected members show very good stability against high temperatures, water, Li battery cathode Li2CoMn3O8 and carbon. The Li5+xBaxLa3-xNb2O12 garnets have shown to readily undergo an ion-exchange (proton) reaction under water treatment at room temperature; however, the Ta-based garnet appears to exhibit considerably higher stability under the same conditions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. Thangadurai and W. Weppner, Ionics 12, 81–92 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    A. D. Robertson, A. R. West and A.G. Ritchie, Solid State Ionics 104, 1 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    X. Xu, J. B. Bates, G. E. Jellison and F. X. Hart, J. Electrochem. Soc. 144, 524 (1997).

    Article  Google Scholar 

  4. 4.

    H. Kawai and J. Kuwano, J. Electrochem. Soc. 141, L78 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    S. Stramare, V. Thangadurai and W. Weppner, Chem. Mater. 15, 3974 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    V. Thangadurai, H. Kaack and W. Weppner, J. Am. Ceram. Soc. 86, 437 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    E. J. Cussen, Chem. Commun. 412 (2006).

  8. 8.

    J. Percival, E. Kendrick and P. Slater, Solid State Ionics 179, 1666 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    R. Murugan, W. Weppner, P. Schmid-Beurmann and V. Thangadurai, Mater. Sci. Eng. B 143, 14 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    E. J. Cussen and T. W. S. Yip, J. Solid State Chem. 180, 1832 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    M. P. O’Callaghan, A. S. Powell, J. J. Titman, G. Z. Chen and E. J. Cussen, Chem. Mater. 20, 2360 (2008).

    Article  Google Scholar 

  12. 12.

    V. Thangadurai and W. Weppner, Adv. Funct. Mater. 15, 107 (2005)

    CAS  Article  Google Scholar 

  13. 13.

    V. Thangadurai and W. Weppner, Ionics 11, 11 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    R. Murugan, V. Thangadurai and W. Weppner, Appl. Phys. A, 91, 615 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    S. Narayanan, V. Epp, M. Wilkening and V. Thangadurai, RSC Adv. 2, 2553 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    A. Ramzy and V. Thangadurai, Appl. Mater. Interfaces 2, 385 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    S. Narayanan and V. Thangadurai, J. Power Sources 196, 8085 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    S. Narayanan, F. Ramezanipour and V. Thangadurai, J. Phys. Chem. C 116, 20154 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    M. P. O’Callaghan and E. J. Cussen, Solid State Sci. 10, 390 (2008).

    Article  Google Scholar 

  20. 20.

    R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem. Int. Ed. 46, 7778 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    J. Awaka, N. Kijima, H. Hayakawa and J. Akimoto, J. Solid State Chem. 182, 2046 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    M. Nyman, T. M. Alam, S. K. McIntyre, G. C. Bleier and D. Ingersoll, Chem. Mater. 22, 5401 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    C. Galven, J. Fourquet, M. Crosnier-Lopez and F. Le Berre, Chem. Mater., 23, 1892 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    L. Truong and V. Thangadurai, Chem. Mater. 23, 3970 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    A. Boulant, P. Maury, J. Emery, J. Buzare and O. Bohnke, Chem. Mater. 21, 2209 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    A. Boulant, J. F. Bardeau, A. Jouanneaux, J. Emery, J. Buzare and O. Bohnke, Dalton Trans. 39, 3968 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    O. Bohnke, Q. N. Pham, A. Boulant, J. Emery, T. Salkus and M. Barre, Solid State Ionics 188, 144 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    L. Truong and V. Thangadurai, Inorg. Chem. 51, 1222 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    L. Truong, J. Colter and V. Thangadurai, J. Power Sources (to be published).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumaletha Narayanan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Narayanan, S., Truong, L. & Thangadurai, V. Materials for All-Solid-State Lithium Ion Batteries. MRS Online Proceedings Library 1496, 311 (2012). https://doi.org/10.1557/opl.2013.103

Download citation