Radial p-n Junction Solar Cells by Core-Shell Silicon Nanowire Arrays

Abstract

We first fabricated a p-type single-crystalline SiNW array as the core by statistic electroless metal deposition (SEMD) method[1]. This structure exhibits per excellent absorption efficiency without increasing the diffusion path, indicating 1.75 times greater performance than Si-based planar solar cells under the same condition[2]. Next, we employed a method of spin-on dopant (SOD) to fabricate an n-type layer as an external thin shell, which benefits to decouple the absorption of light from charge transport by allowing lateral diffusion of minority carriers to the p-n junction rather than many microns away as in Si bulk solar cells, and is suitable for our SiNW array with a hydrophilic surface. Finally, our SiNW-based solar cell possesses strong broadband absorption and low reflection from visible light to near IR, in which the highly light trapping mechanism stems from the effective medium theory (EMT) to demonstrate only less than 3% of total reflectance in the range of 500–1100 nm. It also shows conversion efficiency improvement of 20% compared with the planar single-crystalline Si solar cell by the same fabrication processes. The proposed novel photovoltaic device by our core-shell SiNW array revolutionizes the current architecture of solar cells, promising niche points of (1) better absorption, (2) self-antireflection, and (3) low-cost process.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C.-Y. Chen, C.-S. Wu, C.-J. Chou and T.-J. Yen, Adv Mater 20 (20), 3811-+ (2008).

    CAS  Article  Google Scholar 

  2. 2.

    B. M. Kayes, H. A. Atwater and N. S. Lewis, J. Appl. Phys. 97 (11), 114302 (2005).

    Article  Google Scholar 

  3. 3.

    E. Garnett and P. Yang, Nano Lett. 10 (3), 1082–1087 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis and H. A. Atwater, Nature Materials 9 (3), 239–244 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature (2007), Vol. 449, pp. 885-U888.

  6. 6.

    J. Holmes, K. Johnston, R. Doty and B. Korgel, Science (2000).

  7. 7.

    H. Yan, Y. Xing, Q. Hang, D. Yu, Y. Wang, J. Xu, Z. Xi and S. Feng, Chem Phys Lett 323 (3–4), 224–228 (2000).

  8. 8.

    Y. Wu and P. Yang, J. Am. Chem. Soc. 123 (13), 3165–3166 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    S. Ge, K. Jiang, X. Lu, Y. Chen, R. Wang and S. Fan, Adv Mater 17 (1), 56-+ (2005).

  10. 10.

    Y. Wang, V. Schmidt, S. Senz and U. Goesele, Nat Nanotechnol 1 (3), 186–189 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    R. Zhang, Y. Lifshitz and S. Lee, Adv Mater 15 (7–8), 635–640 (2003).

  12. 12.

    A. Usami, M. Ando, M. Tsunekane and T. Wada, Electron Devices, IEEE Transactions on 39 (1), 105–110 (1992).

  13. 13.

    Y. Yamashita, K. Namba, Y. Nakato, Y. Nishioka and H. Kobayashi, J. Appl. Phys. 79 (9), 7051–7057 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    J. Nelson, THE PHYSICS OF SOLAR CELLS. (Imperial College Press, London, 2003).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tai-Yuan Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, TY., Yen, TJ. Radial p-n Junction Solar Cells by Core-Shell Silicon Nanowire Arrays. MRS Online Proceedings Library 1302, 10 (2011). https://doi.org/10.1557/opl.2012.878

Download citation