Intermediate Layers for Thin-Film Polycrystalline Silicon Solar Cells on Glass Formed by Diode Laser Crystallization

Abstract

Intermediate layers between silicon and borosilicate glass are investigated for compatibility with a diode laser crystallization technique for fabrication of thin-film polycrystalline silicon solar cells. SiCx, SiNx and SiOx layers or multilayer stacks of these materials have allowed silicon films of 10μm thickness to be successfully crystallized by diode laser irradiation without dewetting, with each option offering different advantages. SiCx allows the most robust crystallization process, while SiOx is the best barrier to contamination and the most stable layer. SiNx offers the best anti-reflection coating for superstrate configured solar cells. Presently, best device performance is achieved with a SiOx intermediate layer with cells achieving up to ~540 mV open-circuit voltage.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. J. Keevers, T. L. Young, U. Schubert and M. A. Green, in 22nd European PVSEC, Milan (2007), pp. 1783–1790.

    Google Scholar 

  2. 2.

    Y. Qiu, O. Kunz, S. Venkatachalam, D. Van Gestel, R. Egan, I. Gordon and J. Poortmans, in 25th European PVSEC, Valencia (2010), pp. 3633–3637.

    Google Scholar 

  3. 3.

    R. Brendel and A. Goetzberger, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology, Wiley-VCH, Weinheim (2003), pp. 92–107.

    Google Scholar 

  4. 4.

    G. Andrä, J. Plentz, A. Gawlik, E. Ose, F. Falk and K. Lauer, in 22nd European PVSEC, Milan (2007), pp. 1967–1970.

    Google Scholar 

  5. 5.

    D. Van Gestel, M. Chahal, P. C. Van Der Wilt, Y. Qiu, I. Gordon, J. S. Im and J. Poortmans, in 35th IEEE PVSC, Honolulu (2010), pp. 279–282.

    Google Scholar 

  6. 6.

    J. Schneider, J. Dore, S. Christiansen, F. Falk, N. Lichtenstein, B. Valk, R. Lewandowska, A. Slaoui, X. Maeder, J. Lábár, G. Sáfrán, M. Werner, V. Naumann and C. Hagendorf, in 25th European PVSEC, Valencia (2010), pp. 3573–3576.

    Google Scholar 

  7. 7.

    D. Amkreutz, J. Müller, M. Schmidt, T. Hänel and T. F. Schulze, Prog Photovoltaics Res Appl, 19, (8), pp. 937–945, (2011).

    CAS  Article  Google Scholar 

  8. 8.

    B. D. Eggleston, J. Dore, J. L. Huang, S. Varlamov and M. A. Green, presented at Mater Res Soc Symp, San Francisco (to be published, 2012).

    Google Scholar 

  9. 9.

    http://www.jawoollam.com/wvase32.html Accessed April 20, 2012.

  10. 10.

    J. G. Li and H. Hausner, Mater Lett, 14, (5-6), pp. 329–332, (1992).

    CAS  Article  Google Scholar 

  11. 11.

    J. R. Davis, A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Rai-Choudhury, J. R. McCormick and H. C. Mollenkopf, IEEE Trans. Electron Devices, 27, (4), pp. 677–687, (1980).

    Article  Google Scholar 

  12. 12.

    S. Janz, S. Reber and S. W. Glunz, in 21st European PVSEC, Dresden (2006), pp. 660–663.

    Google Scholar 

  13. 13.

    M. A. Green, Appl. Phys. A, 96, (1), pp. 153–159, (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This project has been supported by the Australian Government through the Australian Solar Institute (ASI) and ARC linkage grant LP0883548. Many thanks to Kazuo Omaki for silicon depositions, to Bill Gong for XPS measurements, to Patrick Campbell for assistance with sputter deposition, to EAG for SIMS measurements, to Suntech R&D Australia Pty Ltd and its employees for device processing and characterization assistance and to former employees of CSG Solar AG for their various contributions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathon Dore.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dore, J., Evans, R., Eggleston, B.D. et al. Intermediate Layers for Thin-Film Polycrystalline Silicon Solar Cells on Glass Formed by Diode Laser Crystallization. MRS Online Proceedings Library 1426, 63–68 (2012). https://doi.org/10.1557/opl.2012.866

Download citation