Modeling and Experimental Study of SiH4/GeH4/H2 Gas Discharge for Hydrogenated Silicon Germanium Deposition by RF PECVD

Abstract

A one-dimensional model has been developed for radio frequency (RF) glow discharge of SiH4/GeH4/H2 3-gases mixture at a high pressure regime based on the fluid model. The behavior of electrons, neutrals, radicals and ions with corresponding rate constants is described by drift-diffusion equations that are coupled with the Poisson’s equation and solved with an explicit central-difference discretization scheme. The germanium (Ge) content in the deposited film and germane (GeH4) radical fraction in the gas phase are found to decrease as total gas pressure increases in contrast to the increased deposition rate, which are explained by the fact that GeHx-group species are more thoroughly depleted and less promoted by the denser plasma at high pressure compared to SiHx-group species. The multiplied population of electrons and hydrogen atoms in the quadratically denser plasma also boosts secondary reactions which are favorable for SiH3 and GeH3 and consume SiH2 and GeH2 for high order radicals.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Yang, A. Banerjee, and S. Guha, Appl. Phy. Lett, 70, 22 (1997).

    Article  Google Scholar 

  2. 2.

    J. Rath, F. Tichelaar, and R. Schropp, Solar Energy Materials & Solar Cells, 74, 553–560 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    V. Dalal, M. Leonard, J. Booker, and S.S. Hegedus, IEEE PVSC Proc., 1500 (1986).

  4. 4.

    G. Ganguly, T. Ikeda, T. Nishimiya, M. Kondo, A. Matsuda, Appl. Phys. Lett., 69, 27 (1996).

    Article  Google Scholar 

  5. 5.

    J. Meier, R. Torres, R. Platz, S. Dubail, U. Kroll, J. Selvan, N. Vaucher, Hof C., D. Fischer, H. Keppner, A. Shah, K. Ufert, P. Giannoules, and J. Koehler, Mat. Res. Soc. Symp. Proc., 420, 3 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    S. Hegedus, R. Rocheleau, R. Tullman, D. Albright, N. Saxena, W. Buchanan, K. Schubert, R. Dozier, Prog. in PV: Res. & Appl., 12, 155–176 (2004).

    CAS  Google Scholar 

  7. 7.

    T. Matsuia, and M. Kondoa, Mat. Res. Soc. Symp. Proc., 1321, 21–32 (2011).

    Google Scholar 

  8. 8.

    M. J. Kushner, J Appl. Phys., 63, 2532–2551 (1988).

    CAS  Article  Google Scholar 

  9. 9.

    J. P. Boeuf, Phys. Rev. A, 36, 2782–2792 (1987).

    CAS  Article  Google Scholar 

  10. 10.

    T.E. Nitschke, and D. Graves, J. Appl. Phys., 76, 5646–5660 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    E. Amanatides, S. Stamou, and D. Mataras, J. Appl. Phys., 90, 5786–5798 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    J. R. Doyle, D.A. Doughty, and A. Gallagher, J. Appl. Phys., 71, 4727–4738 (1992).

    CAS  Article  Google Scholar 

  13. 13.

    H. Simka, M. Hierlemann, M. Utz, and K.F. Jensen, J. Electrochem. Soc., 143, 2646 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, H. Wagner, Phil. Mag., 77, 1447 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    C. Smit, R. Swaaij, H. Donker, A. Petit, W. Kessels, M. Sanden, J. Appl. Phys., 94, 3582 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    L. Zhao, Y. Chae, D. Song, D. Wang, and Z. Yuan, 37 IEEE PVSC Conf. Proc. (2011).

  17. 17.

    M. Isomura, M. Kondo, A. Matsuda, Sol. Energ. Mat. Sol. Cells, 66, 375–380 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    P.A. Longeway, R.D. Estes, and H.A. Weaklium, J. Phys. Chem., 88, 73 (1984).

    CAS  Article  Google Scholar 

  19. 19.

    J. R. Doyle, D. A. Doughty, and A. Gallagher, J. Appl. Phys., 68, 4375 (1990).

    CAS  Article  Google Scholar 

  20. 20.

    M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, Plas. Sour. Scien. Tech., 12, 205 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    O. Leroy, G. Gousset, L. Alves, J. Perrin, and J. Jolly, Plas. Sour. Sci.and Technol., 7, 348 (1998).

    CAS  Article  Google Scholar 

  22. 22.

    M. J. McCaughey, and M. J. Kushner, J. Appl. Phys., 65, 186–195 (1989).

    CAS  Article  Google Scholar 

  23. 23.

    A. H Mahan, Y. Xua, L. Gedvilas, and D. Williamson, Thin Solid Films, 517, 3532–3535 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    J. R. Doyle, D.A. Doughty, and A. Gallagher, J. Appl. Phys., 69, 4169–4177 (1991).

    CAS  Article  Google Scholar 

  25. 25.

    J. R. Doyle, D. A. Doughty, and A. Gallagher, J. Appl. Phys., 71, 4727–4738 (1992).

    CAS  Article  Google Scholar 

  26. 26.

    V. N. Smirnov, Kinetics and Catalysis, 48, 615–619 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    M. Hierlemann, H. Sirnka, K. F. Jensen, and M. Utz, J de Phys. IV, 5, C571–C577 (1995).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lai Zhao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, L., Hunsperger, R. & Hegedus, S. Modeling and Experimental Study of SiH4/GeH4/H2 Gas Discharge for Hydrogenated Silicon Germanium Deposition by RF PECVD. MRS Online Proceedings Library 1426, 403–408 (2012). https://doi.org/10.1557/opl.2012.841

Download citation