Abstract
We report the synthesis, structural and optical characterization of PbSexS1−x nanorods with diameter between 2 nm to 4.5 nm and length of 12 nm to 24 nm. Their typical photoluminescence spectra exhibit a split of the band-edge exciton band. The temperature dependence photoluminescence of these nanorods revealed a relatively small band-gap temperature coefficient and a mild extension of the radiative lifetime at cryogenic temperatures -all in comparison with photoluminescence processes in PbSe nanorods, as well as in PbSexS1−x quantum dots, with similar absorption band-edge energy. A theoretical model associates the experimental observations to the occurrence of independent transitions from either degenerate or non-degenerate band-edge valleys in PbSexS1-x nanorods, each of which possessing a relatively small electron-hole exchange interaction.
This is a preview of subscription content, access via your institution.
References
- 1.
M. L. Steigerwald; L. E. Brus, Semiconductor crystallites: a class of large molecules. Accounts of Chemical Research 1990, 23 (6), 183–188.
- 2.
A. L. Efros; M. Rosen, The Electronic Structure of Semiconductor Nanocrystals. Annual Review of Materials Science 2000, 30 (1), 475–521.
- 3.
A. Kigel; M. Brumer; G. Maikov; A. Sashchiuk; E. Lifshitz, The ground-state exciton lifetime of PbSe nanocrystal quantum dots. Superlattices and Microstructures 2009, 46(1-2), 272–276.
- 4.
A. J. Nozik; M. C. Beard; J. M. Luther; M. Law; R. J. Ellingson; J. C. Johnson, Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chemical Reviews 2010, 110 (11), 6873–6890.
- 5.
A. J. Nozik, Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures 2002, 14(1-2), 115–120.
- 6.
P. M. Allen; W. Liu; V. P. Chauhan; J. Lee; A. Y. Ting; D. Fukumura; R. K. Jain; M. G. Bawendi, InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared. Journal of the American Chemical Society 2009, 132 (2), 470–471.
- 7.
M. D. Regulacio; M.-Y. Han, Composition-Tunable Alloyed Semiconductor Nanocrystals. Accounts of Chemical Research 2010, 43 (5), 621–630.
- 8.
M. Brumer; A. Kigel; L. Amirav; A. Sashchiuk; O. Solomesch; N. Tessler; E. Lifshitz, PbSe/PbS and PbSe/PbSexS1-x Core/Shell Nanocrystals. Advanced Functional Materials 2005, 15 (7), 1111–1116.
- 9.
J. Hu; L.-s. Li; W. Yang; L. Manna; L.-w. Wang; A. P. Alivisatos, Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods. Science 2001, 292 (5524), 2060–2063.
- 10.
P. D. Cunningham; J. E. Boercker; E. E. Foos; M. P. Lumb; A. R. Smith; J. G. Tischler; J. S. Melinger, Enhanced Multiple Exciton Generation in Quasi-One-Dimensional Semiconductors. Nano Letters 2011, 11 (8), 3476–3481.
- 11.
A. Persano; M. De Giorgi; A. Fiore; R. Cingolani; L. Manna; A. Cola; R. Krahne, Photoconduction Properties in Aligned Assemblies of Colloidal CdSe/CdS Nanorods. ACS Nano 2010, 4 (3), 1646–1652.
- 12.
J. G. Tischler; T. A. Kennedy; E. R. Glaser; A. L. Efros; E. E. Foos; J. E. Boercker; T. J. Zega; R. M. Stroud; S. C. Erwin, Band-edge excitons in PbSe nanocrystals and nanorods. Physical Review B 2010, 82 (24), 245303.
- 13.
G. I. Maikov; R. Vaxenburg; A. Sashchiuk; E. Lifshitz, Composition-Tunable Optical Properties of Colloidal IV−VI Quantum Dots, Composed of Core/Shell Heterostructures with Alloy Components. ACS Nano 2010, 4 (11), 6547–6556.
- 14.
M. Bashouti; E. Lifshitz, PbS Sub-micrometer Structures with Anisotropic Shape: Ribbons, Wires, Octapods, and Hollowed Cubes. Inorganic Chemistry 2007, 47 (2), 678–682.
- 15.
K.-S. Cho; D. V. Talapin; W. Gaschler; C. B. Murray, Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. Journal of the American Chemical Society 2005, 127 (19), 7140–7147.
- 16.
C. Schliehe; B. H. Juarez; M. Pelletier; S. Jander; D. Greshnykh; M. Nagel; A. Meyer; S. Foerster; A. Kornowski; C. Klinke; H. Weller, Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment. Science 2010, 329 (5991), 550–553.
- 17.
H. Du; C. Chen; R. Krishnan; T. D. Krauss; J. M. Harbold; F. W. Wise; M. G. Thomas; J. Silcox, Optical Properties of Colloidal PbSe Nanocrystals. Nano Letters 2002, 2 (11), 1321–1324.
- 18.
H. E. Chappell; B. K. Hughes; M. C. Beard; A. J. Nozik; J. C. Johnson, Emission Quenching in PbSe Quantum Dot Arrays by Short-Term Air Exposure. The Journal of Physical Chemistry Letters 2011, 2 (8), 889–893.
- 19.
Y. P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 1967, 34 (1), 149–154.
- 20.
A. Olkhovets; R. C. Hsu; A. Lipovskii; F. W. Wise, Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots. Physical Review Letters 1998, 81 (16), 3539.
- 21.
B.-R. Hyun; A. C Bartnik.; W.-k. Koh; N. I. Agladze; J. P. Wrubel; A.J. Sievers; C. B. Murray; F. W. Wise, Far-Infrared Absorption of PbSe Nanorods. Nano Letters 2011, 11 (7), 2786–2790.
- 22.
A. C. Bartnik; A. L. Efros; W. K. Koh; C. B. Murray; F. W. Wise, Electronic states and optical properties of PbSe nanorods and nanowires. Physical Review B 2010, 82 (19), 195313.
Acknowledgments
The authors acknowledge support from the Israel Science Foundation (Projects No. 1009/07 and No. 1425/04), the USA-Israel Binational Science Foundation (No. 2006-225), the Ministry of Science (No. 3-896) and the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 246124 of the SANS project.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brusilovski, A.R., Kolan, D., Maikov, G.I. et al. Optical Properties of Alloyed PbSexS1−x Nanorods. MRS Online Proceedings Library 1390, 00721 (2012). https://doi.org/10.1557/opl.2012.721
Published: