Large-scale Solution Processable Graphene-based Thin Film Devices


The purpose of this work is to fabricate large-scale solution processable graphene-based films from graphene oxide (GO) solution and to characterize the transport properties of these films. The graphene like film is produced by annealing of the GO film to form reduced graphene oxide (rGO) thin films. The conductive rGO thin films are useable as spacer layers in spin valves and as organic electrodes. Atomic Force Microscope (AFM) characterizations on the film thickness and morphology have been carried out and simple electrical transport studies performed on spin coated rGO thin films. We have fabricated rGO thin films ranging from few to tens of nanometers in thickness with conductivities in the order of 1-100 S/m. We also show that the morphology of the films play an important role in facilitating higher conductivities for rGO thin films.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    J. -H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotech. 3, 206 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    A. Akturk and N. Goldsman, J. of Applied Physics 103, 053702 (2008).

    Article  Google Scholar 

  4. 4.

    Y. -M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, P. Avouris, Nano Lett. 9, 422 (2008).

    Article  Google Scholar 

  5. 5.

    B. Trauzettel, D. V. Bulaev, D. Loss and G. Burkard, Nature Phys. 3, 192 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    D. Huertas-Hernando, F. Guinea and A. Brataas, Phys. Rev. B 74, 155426 (2006).

    Article  Google Scholar 

  7. 7.

    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett. 9, 30 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324, 1312 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Özyilmaz, J. -H. Ahn, B. H. Hong and S. Iijima, Nature Nanotech. 5, 574 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    G. Eda, G. Fanchini and M. Chhowalla, Nature Nanotech. 3, 270 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon 42, 2929 (2004).

    CAS  Google Scholar 

  12. 12.

    C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard and K. Kern, Nano Lett., 7, 11 (2007).

    Article  Google Scholar 

  13. 13.

    T. Suzuki and K. Kaneko. Carbon, 26, 743 (1988).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Xia and J. Ouyang, J. Mater. Chem., 21, 4927 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    J. Stejskal and R. G. Gilbert, Pure Appl. Chem., 74, 5, 857 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel and M. Chhowalla, Adv. Funct. Mater, 19, 1 (2009).

    Article  Google Scholar 

Download references


The authors, M. Pesonen, H. S. Majumdar and R. Österbacka, thankfully acknowledge the financial support from Academy of Finland, Center of Excellence Program (project nr. 141115). The authors, J. Kauppila and J. Lukkari, thankfully acknowledge the financial support of the Graduate School of Materials Research (GSMR).

Author information



Corresponding author

Correspondence to Markus Pesonen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pesonen, M., Majumdar, H.S., Kauppila, J. et al. Large-scale Solution Processable Graphene-based Thin Film Devices. MRS Online Proceedings Library 1407, 712 (2012).

Download citation