A Nonzero Gap Two-dimensional Carbon Allotrope from Porous Graphene

Abstract

Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Peng, D. Chen, J. Huang, S. Chikkannanavar, J. Hanisch, M. Jain, D. Peterson, S. Doorn, Y. Lu, Y. Zhu, {et al.}, Phys. Rev. Lett. 101, 145501 (2008).

    Article  Google Scholar 

  2. 2.

    Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Science 306, 666 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    M. Flores, P. Autreto, S. Legoas, and D. Galvao, Nanotechnology 20, 465704 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    S. Cheng, K. Zou, F. Okino, H. Gutierrez, A. Gupta, N. Shen, P. Eklund, J. Sofo, and J. Zhu, Phys. Rev. B 81, 205435 (2010).

    Article  Google Scholar 

  5. 5.

    F. Withers, M. Dubois, and A. Savchenko, Phys. Rev. B 82, 73403 (2010).

    Article  Google Scholar 

  6. 6.

    S. Stankovich, D. Dikin, R. Piner, K. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. Nguyen, and R. Ruoff, Carbon 45, 1558 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    S. Gilje, S. Han, M. Wang, K. Wang, and R. Kaner, Nano Lett. 7, 3394 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    C. Gomez-Navarro, R. Weitz, A. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    R. Ruoff, Nature Nanotechnology 3, 10 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. De Heer, Phys. Rev. Lett. 101, 26801 (2008).

    Article  Google Scholar 

  11. 11.

    A. Kaiser, C. Gómez-Navarro, R. Sundaram, M. Burghard, and K. Kern, Nano Lett. 9, 1787 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    J. Sofo, A. Chaudhari, and G. Barber, Phys. Rev. B, 75, 153401, (2007).

    Article  Google Scholar 

  13. 13.

    S. Ryu, M. Han, J. Maultzsch, T. Heinz, P. Kim, M. Steigerwald, and L. Brus, Nano Lett. 8, 4597 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    D. Elias, R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim, {et al.}, Science 323, 610 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    O. Leenaerts, H. Peelaers, A. Hernandez-Nieves, B. Partoens and F. Peeters, Arxiv preprint arXiv:1009.3847 (2010).

  16. 16.

    S. Blankenburg, M. Bieri, R. Fasel, K. Mullen, C. A. Pignedoli and D. Passerone, Small 6, 2266 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    A. J. Du, Z. H. Zhu, and S. C. Smith, J. Am. Chem. Soc. 132, 2876 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    D. E. Jiang, V. R. Cooper, and S. Dai, Nano Lett. 9, 4019 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Chem. Comm. 46, 3672 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    R. Baughman, H. Eckhardt, and M. Kertesz, J. Chem. Phys. 87, 6687 (1987).

    CAS  Article  Google Scholar 

  21. 21.

    R. H. Baughman, D. S. Galvao, C. Cui, Y. Wang and D. Tománek, Chem. Phys. Lett. 204, 8, (1993).

    CAS  Article  Google Scholar 

  22. 22.

    A. Enyashin and A. Ivanovskii, Phys. St. Solid (b) 248, 1879 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    J. M. Schulman and R. L. Disch, J. Phys Chem. A 111, 10010 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    M. Treier, C. Pignedoli, T. Laino, R. Rieger, K. Mullen, D. Passerone, and R. Fasel, Nature Chem. 3 61 (2010).

    Article  Google Scholar 

  25. 25.

    G. Otero, G. Biddau, C. Sanchez-Sanchez, R. Caillard, M. F. Lopez, C. Rogero, F. J. Palomares, N. Cabello, M. A. Basanta, J. Ortega, J. Mendez, A. M. Echavarren, R. Perez, B. Gomez-Lor, and J. A. Martin-Gago, Nature 454, 865 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    M. Hatanaka, Chem. Phys. Lett. 488, 187 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    M. Bieri, M. Treier, J. Cai, K. A it Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, {et al.}, Chem. Commun. 45, 6919 (2009).

    Article  Google Scholar 

  28. 28.

    J. Schrier, J. Phys. Chem. Lett. 1, 2284 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    B. Delley, J. Chem. Phys. 88, 2547 (1988).

    Article  Google Scholar 

  30. 30.

    B. Delley, J. Chem. Phys. 113, 7756 (2000), DMol3 is available from Accelrys, Inc., as part of Materials Studio and the Cerius2 program suites http://www.accelrys.com.

    CAS  Article  Google Scholar 

  31. 31.

    D. Porezag, T. Frauenheim, T. K Ohler, G. Seifert, and R. Kaschner, Phys. Rev. B 51, 12947 (1995).

    CAS  Article  Google Scholar 

  32. 32.

    B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    R. Gutzleretal., Chem. Commun. 4456 (2009).

Download references

Acknowledgments

The authors acknowledge financial support from the Brazilian agencies FAPESP, CNPq and CAPES.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gustavo Brunetto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brunetto, G., Santos, B.I., Autreto, P.A. et al. A Nonzero Gap Two-dimensional Carbon Allotrope from Porous Graphene. MRS Online Proceedings Library 1407, 709 (2012). https://doi.org/10.1557/opl.2012.709

Download citation