Skip to main content
Log in

Tribological Properties of Graphene and Boron-Nitride Layers: A Fully Atomistic Molecular Dynamics Study

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Graphene has been one of the most important subjects in materials science in the last years. Recently, the frictional characteristics of atomically thin sheets were experimentally investigated using atomic force microscopy (AFM). A new mechanism to explain the enhanced friction for these materials, based on elastic compliance has been proposed. Here, we have investigated the tribological properties of graphene and boron-nitride (single and multi-layers) membranes using fully atomistic molecular dynamics simulations. These simulations were carried out using classical force fields, as implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. The used structural models contain typically hundreds of thousands of atoms. In order to mimic the experimental conditions, an artificial AFM tip was moved over the membranes and the tribological characteristics determined in terms of forces and energies. Our results are in good agreement with the available experimental data. They show that the observed enhanced tribological properties can be explained in terms of out-of-plane geometrical distortions and elastic waves propagation. They validate the general features of the model proposed by Lee et al. (Science 328, 76 (2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. H. Kim, D. B. Asay, and M. T. Dugger, Nano Today 2, 22 (2007).

    Article  Google Scholar 

  2. D. S. Grierson and R. W. Carpick, Nano Today 2, 12 (2007).

    Article  Google Scholar 

  3. R. Guerra, U. Tartaglino, A. Vanossi, and E. Tosatti, Nature Materials 9, 634 (2010).

    Article  CAS  Google Scholar 

  4. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  5. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  6. T. Filleter, J. L. McChesney, A. Bostwick, E. Rotenberg, K. V. Emtsev, Th. Seyller, K. Horn, and R. Bennewitz, Phys. Rev. Lett. 102, 086102 (2009).

    Article  CAS  Google Scholar 

  7. C. Lee, Q. Li, W. Kalb, X-Z. Liu, H. Berger, R. W. Carpick, and J. Hone, Science 328, 76 (2010).

    Article  CAS  Google Scholar 

  8. J. S. Choi, J-S. Kim, I-S. Byun, D. H. Lee, M. J. Lee, B. H. Park, C. Lee, D. Yoon, H. Cheong, K. H. Lee, Y-W. Son, J. Y. Park, and M. Salmeron, Science 333, 607 (2011).

    Article  CAS  Google Scholar 

  9. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  10. Lammps code: http://lammps.sandia.gov/.

Download references

Acknowledgments

Work supported in part by the Brazilian agenices CAPES, CNPq and FAPESP.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, R.P., Machado, L.D., Legoas, S.B. et al. Tribological Properties of Graphene and Boron-Nitride Layers: A Fully Atomistic Molecular Dynamics Study. MRS Online Proceedings Library 1407, 706 (2012). https://doi.org/10.1557/opl.2012.706

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2012.706

Navigation