CVD-Graphene Complementary Logic on Ultra-thin Multilayer Hexagonal Boron Nitride

Abstract

Graphene, a two-dimensional carbon allotrope, has raised great interests as a material candidate for future electronics due to its superb carrier transport and unique physics. The demand for future-generation large-scale carbon-based electronics motivates assembly of large-area graphene and selection of ideal substrate material that best preserves the transport property of graphene. In this work, CVD-assembled large-area graphene on thin multilayer hexagonal boron nitride (h-BN) is employed to demonstrate the basic building block of digital circuit — inverter prototype made of two graphene-channel field-effect transistors (GFETs). The doping in the CVD-grown graphene, probed via electrical measurements, is implemented through non-uniform local surface chemistry. The full transfer response of the graphene logic inverter is demonstrated in the localized P/N doping region.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    A. N. Obraztsov, Nature Nanotech. 4, 212 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature Nanotech. 5, 722 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. F. Crommie, and A. Zettl, Appl. Phys. Lett. 98, 242105 (2011).

    Article  Google Scholar 

  5. 5.

    E. Kim, T. Yu, E. S. Song, and B. Yu, Appl. Phys. Lett. 98, 262103 (2011).

    Article  Google Scholar 

  6. 6.

    R. Sordan, F. Traversi, and V. Russo, Appl. Phys. Lett. 94, 073305 (2009).

    Article  Google Scholar 

  7. 7.

    F. Traversi, V. Russo, and R. Sordan, Appl. Phys. Lett. 94, 223312 (2009).

    Article  Google Scholar 

  8. 8.

    Y. Shi, Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, M. S. Dresselhaus, L.-J. Li, and J. Kong, Nano Lett. 10, 4134 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    X. S. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 312 (2009).

    Google Scholar 

  10. 10.

    V. Geringer, D. Subramaniam, A. K. Michel, B. Szafranek, D. Schall, A. Georgi, T. Mashoff, D. Neumaier, M. Liebmann, and M. Morgenstern, Appl. Phys. Lett. 96, 082114 (2010).

    Article  Google Scholar 

  11. 11.

    H.-Y. Chiu, V. Perebeinos, Y.-M. Lin, and Ph. Avouris, Nano Lett. 10, 4634 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Nano Lett. 10, 1917 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    F. Xia, D. B. Farmer, Y.-M. Lin, and P. Avouris, Nano. Lett. 10, 715 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    T. Yu, C.-W. Liang, C. Kim, and B. Yu, Appl. Phys. Lett. 98, 243105 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

The research was partially supported by National Science Foundation (NSF) Grants ECCS- 1002228 and ECCS-1028267. The authors greatly appreciate technical support from Dr. T. Taniguchi and Dr. K. Watanabe at Advanced Materials Laboratory, National Institute for Materials Science (NIMS), Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edwin Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, E., Jain, N., Xu, Y. et al. CVD-Graphene Complementary Logic on Ultra-thin Multilayer Hexagonal Boron Nitride. MRS Online Proceedings Library 1407, 660 (2012). https://doi.org/10.1557/opl.2012.660

Download citation