Mechanisms of Oxidation of Fuel Cladding Alloys Revealed by High Resolution APT, TEM and SIMS Analysis

Abstract

Aqueous corrosion of zirconium alloys has become the major factor limiting prolonged fuel campaigns in nuclear plant. Studies using SEM, TEM and electrochemical impedance measurements have been interpreted as showing a dense inner-most oxide layer, and an increased thickness of the layer has been correlated to a better corrosion resistance. Many authors have reported that an ‘intermediate layer’ at the metal oxide interface has a complex structure or/and stochiometry different to that of both the bulk oxide and bulk metal, sometimes claimed to be a suboxide phase. Diffraction evidence has suggested the presence of both cubic ZrO and rhombohedral Zr3O phases, and compositional analysis has revealed similar variations in local oxygen stoichiometry. We have carried out a systematic investigation of the structure and chemistry of the metal/oxide interface in samples of commercial ZIRLO corroded for times up to 180 days. We have developed new experimental techniques for the study of these interfaces both by Electron Energy Loss Spectroscopy (EELS) analysis in the Transmission Electron Microscope (TEM) and by Atom Probe Tomography (APT), and exactly the same samples have been investigated by both techniques. Our results show the development of a clearly defined suboxide layer of stoichiometry close to ZrO, and the subsequent disappearance of this layer at the first of the characteristic ‘breakaway’ transitions in the oxidation kinetics. We can correlate this behaviour with changes in the structure of the oxide layer, and particularly the development of interconnected porosity that links the corroding interface with the aqueous environment. Using high resolution SIMS analysis of isotopically spiked samples we demonstrate the penetration of the oxidising species through these porous outer oxide layers.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. P. Sabol, “ZIRLOTM - An Alloy Development Success”, Zirconium in the Nuclear Industry: Fourteenth International Symposium, ed. P. Rudling and B. Kammenzind (American Society for Testing and Materials, Sweden, 2005) pp. 2–24.

    Google Scholar 

  2. [2]

    B. Cox, Journal of Nuclear Materials, 336, 331 (2005)

    CAS  Article  Google Scholar 

  3. [3]

    D. O. Pickman, “Zirconium Alloy Performance in Light Water Reactors: A Review of UK and Scandinavian Experience”, Zirconium in the Nuclear Industry: Tenth International Symposium, ed. A.M. Garde and E.R. Bradley (ASTM STP 1245, American Society for Testing and Materials, 1994), pp. 19–32.

    Google Scholar 

  4. [4]

    A. V. Nikulina, Metal Science and Heat Treatment, 45, 287 (2003)

    CAS  Article  Google Scholar 

  5. [5]

    B. Lustman and F. Kerze, The Metallurgy of Zirconium, (McGraw-Hill Book Company, Michigan, 1955).

    Google Scholar 

  6. [6]

    H.-J. Beie, A. Mitwalsky, F. Garzarolli, H. Ruhmann, H.-J. Sell, “Examinations of the Corrosion Mechanism of Zirconium Alloys”, Zirconium in the Nuclear Industry: Tenth International Symposium, ed. A.M. Garde and E.R. Bradley (ASTM International, Baltimore, MD, 1993), pp. 615–643.

    Google Scholar 

  7. [7]

    C. Lemaignan, “Corrosion of Zirconium Alloy Components in Light Water Reactors ”, ASM Handbook, 13C Corrosion: Environments and Industries (2006) 415–420.

    Google Scholar 

  8. [8]

    T. Ahmed, L.H. Keys, Journal of the Less-Common Metals, 39, 99 (1975)

    CAS  Article  Google Scholar 

  9. [9]

    D. J. Park, J. Y. Park, Y. H. Jeong, J. Y. Lee, Journal of Nuclear Materials, 399, 208 (2010)

    CAS  Article  Google Scholar 

  10. [10]

    R. A. Ploc, Journal of Nuclear Materials, 91, 322 (1980)

    CAS  Article  Google Scholar 

  11. [11]

    A. J. G. Maroto, R. Bordoni, M. Villegas, A. M. Olmedo, M. A. Blesa, A. Iglesias, P. Koenig,, Journal of Nuclear Materials, 229, 79 (1996)

    CAS  Article  Google Scholar 

  12. [12]

    P. Bossis, G. Lelièvre, P. Barberis, X. Iltis, F. Lefebvre, L. Thomas, M. Maguire, “Multi-scale characterization of the metal-oxide interface of zirconium alloys”, Zirconium in the Nuclear Industry: Twelfth International Symposium, ed. G. P. Sabol and G. D. Moan (ASTM International, 2000), pp. 918–945.

    Google Scholar 

  13. [13]

    T. Kubo, M. Uno, “Precipitate Behavior in Zircaloy-2 Oxide-Films and Its Relevance to Corrosion-Resistance”, Zirconium in the Nuclear Industry: Ninth International Symposium, ed. C. M. Eucken and A. M. Garde (ASTM International, 1990), pp. 476–496.

    Google Scholar 

  14. [14]

    N. Ni, S. Lozano-Perez, M.L. Jenkins, C. English, G.D.W. Smith, J.M. Sykes, C.R.M. Grovenor, Scripta Materialia, 62, 564 (2010)

    CAS  Article  Google Scholar 

  15. [15]

    B. Wadman, Z. Lai, H. -O. Nystrom, L.-A. Nyström, P. Rudling, H. Pettersson, “Microstructure of Oxide Layers Formed During Autoclave Testing of Zirconium Alloys”, Zirconium in the Nuclear Industry: Tenth International Symposium, ed. A. M. Garde and E. R. Bradley (ASTM International, Baltimore, MD, 1993), pp. 579–598.

    Google Scholar 

  16. [16]

    G. Wikmark, P. Rudling, B. Lehtinen, B. Hutchinson, A. Oscarsson, E. Ahlberg, “The Importance of Oxide Morphology for the Oxidation Rate of Zirconium Alloys”, Zirconium in the Nuclear Industry: Eleventh International Symposium, ed. E.R. Bradley and G.P. Sabol (ASTM STP 1295, 1996), pp. 55–73.

    Google Scholar 

  17. [17]

    A. Yilmazbayhan, E. Breval, A. T. Motta, R. J. Comstock, Journal of Nuclear Materials, 349, 265 (2006)

    CAS  Article  Google Scholar 

  18. [18]

    X. Iltis and H. Michel, Journal of Alloys and Compounds, 177, 71 (1991)

    CAS  Article  Google Scholar 

  19. [19]

    S. Abolhassani, G. Barta, A. Jakobb, Journal of Nuclear Materials, 399, 1 (2010)

    CAS  Article  Google Scholar 

  20. [20]

    D. T. Foord, S. B. Newcomb, “Instabilities in the Oxidation Behaviour of Zircaloy-4”, Microscopy of Oxidation-2, ed. S. B. Newcomb and M. J. Bennett (The institute of Materials, 1993), pp. 374–386.

    Google Scholar 

  21. [21]

    T. Furuta, H. Motohashi, Journal of Nuclear Materials, 95, 303 (1980)

    CAS  Article  Google Scholar 

  22. [22]

    H. Anada, K. Takeda, “Microstructure of Oxides on Zircaloy-4, 1.0Nb Zircaloy-4, and Zircaloy-2 Formed in 10.3-MPa Steam at 673 K”, Zirconium in the Nuclear Industry: Eleventh International Symposium, ed. E. R. Bradley and G. P. Sabol (American Society for Testing and Materials, Garmisch-Partenkirchen, Germany, 1995), pp. 35–54.

    Google Scholar 

  23. [23]

    S. Lozano-Perez, Micron, 39,320 (2008)

    CAS  Article  Google Scholar 

  24. [24]

    N. Ni, S. Lozano-Perez, J. Sykes, C. Grovenor, Ultramicroscopy, 111, 123 (2010)

    Article  Google Scholar 

  25. [25]

    M. K. Miller, K. F. Russell, G. B. Thompson, Ultramicroscopy, 102, 287 (2005)

    CAS  Article  Google Scholar 

  26. [26]

    S. Banerjee and P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys, (Pergamon, Oxford, 2007).

    Google Scholar 

  27. [27]

    Y. Ishii, J.M. Sykes, Materials at High Temperatures, 17, 23 (2000)

    CAS  Article  Google Scholar 

  28. [28]

    D. T. Foord, S.B. Newcomb, “The Microstructural Characterization of Factors Which Determine the Degradation Behaviour of Zircaloy-4”, Microscopy of Oxidation 3, ed. S.B. Newcomb and J.A. Little (Henry Ling Ltd. Dorset, UK 1996), pp. 488–498.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grovenor, C.R.M., Ni, N., Hudson, D. et al. Mechanisms of Oxidation of Fuel Cladding Alloys Revealed by High Resolution APT, TEM and SIMS Analysis. MRS Online Proceedings Library 1383, 101–112 (2011). https://doi.org/10.1557/opl.2012.521

Download citation