CMOS Compatible Growth of Carbon Nanotubes and Their Application in Field-Effect Transistors


The metal-catalyst-free growth of carbon nanotubes (CNTs) using chemical vapor deposition and the application in field-effect transistors (FETs) is presented. The CNT growth process used a 3-nm-thick Ge layer on SiO2 that was subsequently annealed to produce Ge nanoparticles. Raman measurements show the presence of radial breathing mode (RBM) peaks and the absence of the disorder induced D-band, indicating single walled CNTs (SWNTs) with a low defect density. The synthesized CNTs are used to fabricate CNTFETs and the best device has a state-of-the-art on/off current ratio of 3×108 and a steep sub-threshold slope of 110 mV/decade.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Appenzeller, Proc. IEEE 96, 201 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    K. Besteman, J. Lee, F. Wiertz, H. Heering, and C. Dekker, Nano. Lett. 3, 727 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    F. Kreupl, A. Graham, G. Duesberg, W. Steinhögl, M. Liebau, E. Unger, and W. Hönlein, Microelectronic Engineering 64, 399 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    M. Haque, K. Teo, N. Rupensinghe, S. Ali, I. Haneef, S. Maeng, J. Park, F. Udrea, and W. Milne, Nanotechnology 19, 25607 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    P. Nikolaev, M. Bronikowski, R. Bradley, F. Rohmund, D. Colbert, K. Smith, and R. Smalley, Chem. Phys. Lett. 313, 91 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    M. Kusunoki, M. Rokkaku, and T. Suzuki, Appl. Phys. Lett. 71, 2620 (1997).

    CAS  Article  Google Scholar 

  7. 7.

    S. Botti, R. Ciardi, M. Terranova, S. Piccirillo, V. Sessa, M. Rossi, and M. Vittori-Antisari, Appl. Phys. Lett. 80, 1441 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    T. Uchino, K. N. Bourdakos, C. H. de Groot, P. Ashburn, M. E. Kiziroglou, G. D. Dilliway, and D. C. Smith, Appl. Phys. Lett. 86, 233110 (2005).

    Article  Google Scholar 

  9. 9.

    D. Takagi, H. Hibino, S. Suzuki, Y. Kobayashi, and Y. Homma, Nano Lett. 7, 2272 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    T. Uchino, G. Ayre, D. C. Smith, J. L. Hutchison, C. H. de Groot, and P. Ashburn, J. Electrochem. Soc. 156, K144 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, and H. Cheng, J. Am. Chem. Soc. 131, 2082 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    S. Huang, Q. Cai, J. Chen, Y. Qian, and L. Zhang, J. Am. Chem. Soc. 131, 2094 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    F. LeGoues, R. Rosenberg, and B. Meyerson, Appl. Phys. Lett. 54, 644 (1989).

    CAS  Article  Google Scholar 

  14. 14.

    I. Aharonovich, Y. Lifshitz, and S. Tamir, Appl. Phys. Lett. 90, 263109 (2007).

    Article  Google Scholar 

  15. 15.

    P. Carter, B. Gleeson, and D. Young, Oxid. Met. 56, 375 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    T. Uchino, J. L. Hutchison, G. Ayre, D. C. Smith, C. H. de Groot, and P. Ashburn, Jpn. J. Appl. Phys. 50, 04DN02 (2011).

  17. 17.

    A. Jorio, C. Fantini, M. Dantas, M. Pimenta, A. Filho, G. Samsonidze, V. Brar, G. Dresselhaus, M. Dresselhaus, A. Swan, M. Unlu, B. Goldberg, and R. Saito, Phys. Rev. B 66, 115411 (2002).

    Article  Google Scholar 

  18. 18.

    L. Rispal and U. Schwalke, IEEE Electron Device Lett. 29, 1349 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Z. Chen, J. Appenzeller, J. Knoch, Y. Lin, and P. Avouris, Nano Lett. 5, 1497 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    M. Yang, K. Teo, W. Milne, and D. Hasko, Appl. Phys. Lett. 87, 253116 (2005).

    Article  Google Scholar 

  22. 22.

    J. Guo, S. Datta, and M. Lundstrom, IEEE Tran. Electron Devices 51, 172 (2004).

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge EPSRC for supporting this work. T.U. thanks the Research Institute of Electrical Communication, Tohoku University for supporting the research.

Author information



Corresponding author

Correspondence to T. Uchino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uchino, T., Ayre, G., Smith, D. et al. CMOS Compatible Growth of Carbon Nanotubes and Their Application in Field-Effect Transistors. MRS Online Proceedings Library 1407, 377 (2012).

Download citation