Surface Decontamination by Photocatalysis

Abstract

Currently in the nuclear industry, surface contamination in the form of radioactive metal or metal oxide deposits is most commonly removed by chemical decontamination, electrochemical decontamination or physical attrition. Physical attrition techniques are generally used on structural materials (concrete, plaster), with (electro)chemical methods being used to decontaminate metallic or painted surfaces. The most common types of (electro)chemical decontamination are the use of simple mineral acids such as nitric acid or cerium (IV) oxidation (MEDOC). Use of both of these reagents frequently results in the dissolution of a layer of the substrate surface increasing the amount of secondary waste which leads to greater burden on downstream effluent treatment and waste management plants. In this context, both mineral acids and MEDOC can be indiscriminate in the surfaces attacked during deployment, e.g. attacking in transit through a pipe system to the site of contamination resulting in both diminished effect of the decontaminating reagent upon arrival at its target site and an increased secondary waste management requirement. This provides two main requirements for a more ideal decontamination reagent: Improved area specificity and a dissolution power equal to or greater than the previously mentioned current decontaminants. Photochemically promoted processes may provide such a decontamination technique. Photochemical reduction of metal ion valence states to aid in heavy metal deposition has already been extensively studied, with reductive manipulation also being achieved with uranium and plutonium simulants (Ce). Importantly photooxidation of a variety of solution phase metals, including neptunium, has also been achieved. Here we briefly review existing decontamination techniques and report on the potential application of photo promoted oxidation technologies to metal dissolution (including process steels) and to the dissolution of adsorbed actinide contaminants.

This is a preview of subscription content, access via your institution.

References

  1. 2.

    International Atomic Energy Agency, State of the Art Technology for Decontamination and Dismantling of Nuclear Facilities: Technical Report Series no. 395, (International Atomic Energy Agency, 1999), pp 32–33.

    Google Scholar 

  2. 2.

    J.P. Caire, F. Laurent, S. Cullie, F. Dalard, J.M. Fulconis, H. Delagrange, J. Appl. Electrochem. 33, 703 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    T. Suwa, N. Kuribayashi, E. Tachikawa, J. Nucl. Sci. Technol. 23, 622 (1986); 25, 574(1988).

    CAS  Article  Google Scholar 

  4. 4.

    M. Matheswaran, S. Balaji, S.J. Chung, I.S. Moon, Catal. Commun. 8, 1497 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    D. Bradbury, in Water Chemistry of Nuclear Reactor Systems 8, (British Nuclear Energy Society, Thomas Telford Ltd, 2000), pp 173–178.

    Google Scholar 

  6. 6.

    H. Wille, in Water Chemistry of Nuclear Reactor Systems 8, (British Nuclear Energy Society, Thomas Telford Ltd, 2000), pp 179–184.

    Google Scholar 

  7. 7.

    DUMMY Inami, Y. Sato, T. Kanasaki, N. Suzuki, A. Fujimori, A. Makihara, H. Wille, F. Strohmer, in Water Chemistry of Nuclear Reactor Systems 8, (British Nuclear Energy Society, Thomas Telford Ltd, 2000), pp 444–450.

    Google Scholar 

  8. 8.

    H. Wille, H.O. Bertholdt, Nucl. Eur. 8, 41 (1988).

    CAS  Google Scholar 

  9. 9.

    H. Wille, H.O. Bertholdt, in Water Chemistry of Nuclear Reactor Systems 7, (British Nuclear Energy Society, Thomas Telford Ltd, 1996), pp 317–323.

    Google Scholar 

  10. 10.

    R. Shimizu, K. Sawada, Y. Enokida, I. Yamamoto, J. Nucl. Sci. Technol. 43, 694 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    A.J. Hoffman, E.R. Carraway, M.R. Hoffmann, Environ Sci Technol, 28, 776 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    H. Goto, Y. Hanada, T. Ohno, M. Matsumura, J. Catal. 225, 223 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    J. Bandara, I. Guasaquillo, P. Bowen, L. Soare, W.F. Jardim, J. Kiwi, Langmuir 21, 8554 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    J. Premkumar, R. Ramaraj, J. Mol. Catal. A-Chem. 142, 153 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    L. Maya, B.D. Gonzalez, M.J. Lance, D.E. Holcomb, J. Radioanal. Nucl. Chem. 261, 605 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    L.R. dos Santos, M.E. Sbampato, A.M. dos Santos, J. Radioanal. Nucl. Chem. 261, 203 (2004).

    Article  Google Scholar 

  17. 17.

    M. Amme, Radiochim. Acta. 90, 399 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    C. Corbel, G. Sattonnay, S. Guilbert, F. Garrido, M.F. Barthe, C. Jegou, J. Nucl. Mater. 348, 1 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    M. Amme, B. Renker, B. Schmid, M.P. Feth, H. Bertagnolli, W. Döbelin, J. Nucl. Mater. 306, 202 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    F. Clarens, J. De Pablo, I. Diez-Perez, I. Casas, J. Gimenez, M. Rovira, Environ Sci Technol, 38, 6656 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    M. Itagaki, H. Nakazawa, K. Watanabe, K. Noda, Corros. Sci. 39, 901 (1997).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilbraham, R.J., Boxall, C. & Taylor, R.J. Surface Decontamination by Photocatalysis. MRS Online Proceedings Library 1383, 119–125 (2011). https://doi.org/10.1557/opl.2012.182

Download citation