Smart Surfaces: Use of Electrokinetics for Selective Modulation of Biomolecular Affinities

Abstract

With the aid of negative dielectrophoresis (nDEP) force in conjunction with shear force and at an optimal sodium hydroxide (NaOH) concentration we demonstrated a switch-like functionality to elute immuno-bound beads from the surface. At an optimal flow rate and NaOH concentration, nDEP turned on results in bead detachment, whereas when nDEP is off, the beads remain attached. This platform offers the potential for performing a bead-based multiplexed immunoassay where in a single channel various regions are immobilized with a different antibody, each targeting a different antigen. As a proof of concept we demonstrated the ability of nDEP to provide this switching behavior in a singleplex assay for the interactions that were in the same order of magnitude in strength as typical antibody-antigen interactions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Voldman, J.; Braff, R. A.; Toner, M.; Gray, M. L.; Schmidt, M. A., Holding Forces of Single-Particle Dielectrophoretic Traps. Biophysical Journal 2001, 80(1), 531–542.

    CAS  Article  Google Scholar 

  2. 2.

    Li, H.; Yanan, Z.; Akin, D.; Bashir, R., Characterization and modeling of a microfluidic dielectrophoresis filter for biological species. Microelectromechanical Systems, Journal of 2005, 14(1), 103–112.

    Article  Google Scholar 

  3. 3.

    Crews, N.; Darabi, J.; Voglewede, P.; Guo, F.; Bayoumi, A., An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics. Sensors and Actuators B: Chemical 2007, 125(2), 672–679.

    CAS  Article  Google Scholar 

  4. 4.

    Hughes, M. P.; Morgan, H., Dielectrophoretic Characterization and Separation of Antibody-Coated Submicrometer Latex Spheres. Analytical Chemistry 1999, 71(16), 3441–3445.

    CAS  Article  Google Scholar 

  5. 5.

    Cheng, I., An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 2007, 1 (2), 021503.

    Article  Google Scholar 

  6. 6.

    Lee, H. J.; Yasukawa, T.; Shiku, H.; Matsue, T., Rapid and separation-free sandwich immunosensing based on accumulation of microbeads by negative-dielectrophoresis. Biosensors and Bioelectronics 2008, 24(4), 1000–1005.

    CAS  Article  Google Scholar 

  7. 7.

    Suzuki, M.; Yasukawa, T.; Shiku, H.; Matsue, T., Negative dielectrophoretic patterning with different cell types. Biosensors and Bioelectronics 2008, 24(4), 1043–1047.

    CAS  Article  Google Scholar 

  8. 8.

    Baek, S. H.; Chang, W.-J.; Baek, J.-Y.; Yoon, D. S.; Bashir, R.; Lee, S. W., Dielectrophoretic Technique for Measurement of Chemical and Biological Interactions. Analytical Chemistry 2009, 81(18), 7737–7742.

    CAS  Article  Google Scholar 

  9. 9.

    Gadish, N.; Voldman, J., High-Throughput Positive-Dielectrophoretic Bioparticle Microconcentrator. Analytical Chemistry 2006, 78(22), 7870–7876.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant PO1HG000205.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sam Emaminejad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Emaminejad, S., Javanmard, M., Dutton, R.W. et al. Smart Surfaces: Use of Electrokinetics for Selective Modulation of Biomolecular Affinities. MRS Online Proceedings Library 1415, 133–138 (2012). https://doi.org/10.1557/opl.2012.149

Download citation