Solution Growth and Optical Characterization of Thin Films with ZnO1-xSx and ZnO Nanorods in Core-Shell like Nanostructure for Solar Cell Application

Abstract

ZnO films with a nanostructure dominated by 150–200 nm size highly c-axis oriented nanorod arrays were deposited by hydrothermal synthesis over surface activated quartz substrates. Sulfur infiltration and growth of ZnO1-xSx over ZnO nanorods was carried out by chemiplating process using slow hydrolysis of thiourea solution at 95°C. Formation of ZnO1-xSx nanocrystals of 20–30 nm size over (0001) facets of the ZnO rods is shown. With progressive growth of ZnO1-xSx nanocrystal and full ZnO nanorod coverage, the formation ZnO/ZnO1-xSx core–shell nanostructure is realized. X-ray photoelectron spectroscopy analysis shows chemical shifts in O1s and S2p spectra confirming the formation of ZnO1-xSx (0.1≤x≤0.2) nanocrystal shell. Reduction in optical band gap from a 3.24 eV for ZnO nanorod core to 2.78 eV for the ZnO1-xSx shell is consistent with the band gap bowing effect due to sulfur addition over the ZnO nanorod surface.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. Y. Zhai, L. Li, Y. Ma, M. Liao, Xi Wang, X. S. Fang, J. Yao, Y. Bando and D. Golberg, Chem. Soc. Rev. 40, 2986 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    J. Schrier, D.O. Demchenko, and L.W. Wang, Nano Lett. 7, 2377 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern and A. Mascarenhas, Appl. Phys. Lett. 96, 123105 (2010).

    Article  Google Scholar 

  4. 4.

    C. K. Xu, P. Shin, L.L. Cao and D. Gao, J. Phys. Chem. C 114, 125 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    S. Y. Bae, H.W. Seo and J. Park, J. Phys. Chem. B 108, 5206 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    L. Vayssieres, C. Chaneac, E. Tronc and J. Jolivet, J.Colloid. Interface Sci. 205, 205 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nature Mater. 4, 455 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    L. E. Greene, M. Law, D. H. Tan, M. Montano and J. Goldberger, Nano Lett. 5, 1231 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    B. Baxter, A. M. Walker, K. V. Ommering and E. S. Aydil, Nanotechnology 17, S304 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    B. K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, T. Kramer, and C. Wang, Appl. Phys. Letts. 85, 4929 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    X. Zhang, Z. Yan, J. Zhao, Zi. Qin and Y. Zhang, Mat. Letts. 63, 444 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    D.P. Kim, I. Kim and K.H. Kwon, Thin Solid Films 459, 131 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Y.Z Yoo., Z. W. Jin, T. Chikyow, T. Fukumura, M. Kawasaki and H. Koinuma, Appl. Phys. Lett. 81, 3798 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Office of Naval Research (ONR) under contract N00014-11-1-0658 which is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ratheesh R. Thankalekshmi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thankalekshmi, R.R., Rastogi, A.C. Solution Growth and Optical Characterization of Thin Films with ZnO1-xSx and ZnO Nanorods in Core-Shell like Nanostructure for Solar Cell Application. MRS Online Proceedings Library 1449, 93–98 (2012). https://doi.org/10.1557/opl.2012.1289

Download citation